Spaces:
Sleeping
Sleeping
import data_prep | |
import model_predict | |
import gradio as gr | |
model_dict = { | |
"BERT-Base": "research-dump/bert-base-uncased_deletion_multiclass_complete_Final", | |
"BERT-Large": "research-dump/bert-large-uncased_deletion_multiclass_complete_final", | |
"RoBERTa-Base": "research-dump/roberta-base_deletion_multiclass_complete_final", | |
"RoBERTa-Large": "research-dump/roberta-large_deletion_multiclass_complete_final" | |
} | |
def process_url(url, model_key): | |
model_name = model_dict[model_key] | |
processed_text = data_prep.process_data(url) | |
final_scores = model_predict.predict_text(processed_text, model_name) | |
highest_prob_label = max(final_scores, key=final_scores.get) | |
highest_prob = final_scores[highest_prob_label] | |
progress_bars = {label: score for label, score in final_scores.items()} | |
return processed_text, highest_prob_label, highest_prob, progress_bars #,highlighted_text | |
url_input = gr.Textbox(label="URL") | |
model_name_input = gr.Dropdown(label="Model Name", choices=list(model_dict.keys()), value=list(model_dict.keys())[0]) | |
outputs = [ | |
gr.Textbox(label="Processed Text"), | |
gr.Textbox(label="Label with Highest Probability"), | |
gr.Textbox(label="Probability"), | |
gr.JSON(label="All Labels and Probabilities"), | |
#gr.HTML(label="Processed Text") | |
] | |
demo = gr.Interface(fn=process_url, inputs=[url_input, model_name_input], outputs=outputs) | |
demo.launch() #share=True) |