import data_prep import model_predict import gradio as gr model_dict = { "BERT-Base": "research-dump/bert-base-uncased_deletion_multiclass_complete_Final", "BERT-Large": "research-dump/bert-large-uncased_deletion_multiclass_complete_final", "RoBERTa-Base": "research-dump/roberta-base_deletion_multiclass_complete_final", "RoBERTa-Large": "research-dump/roberta-large_deletion_multiclass_complete_final" } def process_url(url, model_key): model_name = model_dict[model_key] processed_text = data_prep.process_data(url) final_scores = model_predict.predict_text(processed_text, model_name) highest_prob_label = max(final_scores, key=final_scores.get) highest_prob = final_scores[highest_prob_label] progress_bars = {label: score for label, score in final_scores.items()} return processed_text, highest_prob_label, highest_prob, progress_bars #,highlighted_text url_input = gr.Textbox(label="URL") model_name_input = gr.Dropdown(label="Model Name", choices=list(model_dict.keys()), value=list(model_dict.keys())[0]) outputs = [ gr.Textbox(label="Processed Text"), gr.Textbox(label="Label with Highest Probability"), gr.Textbox(label="Probability"), gr.JSON(label="All Labels and Probabilities"), #gr.HTML(label="Processed Text") ] demo = gr.Interface(fn=process_url, inputs=[url_input, model_name_input], outputs=outputs) demo.launch() #share=True)