File size: 4,657 Bytes
28bd76d
 
 
 
11e1178
28bd76d
11e1178
 
 
 
 
28bd76d
7d43e23
11e1178
28bd76d
11e1178
 
 
28bd76d
11e1178
28bd76d
11e1178
 
 
 
 
28bd76d
 
11e1178
 
 
 
 
 
 
 
 
 
28bd76d
11e1178
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28bd76d
 
11e1178
 
 
 
 
 
 
 
 
 
28bd76d
 
 
 
11e1178
 
 
 
28bd76d
 
11e1178
28bd76d
 
11e1178
28bd76d
 
 
11e1178
 
 
28bd76d
11e1178
28bd76d
11e1178
 
 
 
 
28bd76d
 
 
 
 
 
 
11e1178
 
 
28bd76d
 
11e1178
 
 
 
 
 
 
 
 
 
 
28bd76d
 
7d43e23
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
from optimum.intel.openvino.modeling_diffusion import OVModelVaeDecoder, OVBaseModel, OVStableDiffusionPipeline
import torch
from huggingface_hub import snapshot_download
import openvino.runtime as ov
from typing import Optional, Dict



model_id = "Disty0/LCM_SoteMix"
#model_id = "Disty0/sotediffusion-v2" #不可

#1024*512 θ¨˜ζ†Άι«”δΈθΆ³
HIGH=512
WIDTH=512

batch_size = -1

class CustomOVModelVaeDecoder(OVModelVaeDecoder):
    def __init__(
        self, model: ov.Model, parent_model: OVBaseModel, ov_config: Optional[Dict[str, str]] = None, model_dir: str = None,
    ):
        super(OVModelVaeDecoder, self).__init__(model, parent_model, ov_config, "vae_decoder", model_dir)


pipe = OVStableDiffusionPipeline.from_pretrained(
        model_id, 
        compile = False, 
        ov_config = {"CACHE_DIR":""},
        torch_dtype=torch.int8, #εΏ«
        #torch_dtype=torch.bfloat16, #δΈ­
        #variant="fp16", 
        #torch_dtype=torch.IntTensor, #ζ…’
        use_safetensors=False,
        )

taesd_dir = snapshot_download(repo_id="deinferno/taesd-openvino")

pipe.vae_decoder = CustomOVModelVaeDecoder(model = OVBaseModel.load_model(f"{taesd_dir}/vae_decoder/openvino_model.xml"), 
                                           parent_model = pipe, 
                                           model_dir = taesd_dir
                                          )



pipe.reshape( batch_size=-1, height=HIGH, width=WIDTH, num_images_per_prompt=1)
#pipe.load_textual_inversion("./badhandv4.pt", "badhandv4")
#pipe.load_textual_inversion("./Konpeto.pt", "Konpeto")
#<shigure-ui-style>
#pipe.load_textual_inversion("sd-concepts-library/shigure-ui-style")
#pipe.load_textual_inversion("sd-concepts-library/ruan-jia")
#pipe.load_textual_inversion("sd-concepts-library/agm-style-nao")


pipe.compile()

prompt=""
negative_prompt="(worst quality, low quality, lowres, loli, kid, child), zombie, interlocked fingers, large breasts, username, watermark,"

def infer(prompt,negative_prompt):

    image = pipe(
        prompt = prompt, 
        negative_prompt = negative_prompt,
        width = WIDTH, 
        height = HIGH,
        guidance_scale=1.0,
        num_inference_steps=8,
        num_images_per_prompt=1,
    ).images[0] 
    
    return image



examples = [
    "(Digital art, highres, best quality, 8K, masterpiece, anime screencap, perfect eyes:1.4, ultra detailed:1.5),1girl,flat chest,short messy pink hair,blue eyes,tall,thick thighs,light blue hoodie,collar,light blue shirt,black sport shorts,bulge,black thigh highs,femboy,okoto no ko,smiling,blushing,looking at viewer,inside,livingroom,sitting on couch,nighttime,dark,hand_to_mouth,",
    "1girl, silver hair, symbol-shaped pupils, yellow eyes, smiling, light particles, light rays, wallpaper, star guardian, serious face, red inner hair, power aura, grandmaster1, golden and white clothes",
    "masterpiece, best quality, highres booru, 1girl, solo, depth of field, rim lighting, flowers, petals, from above, crystals, butterfly, vegetation, aura, magic, hatsune miku, blush, slight smile, close-up, against wall,",
    "((colofrul:1.7)),((best quality)), ((masterpiece)), ((ultra-detailed)), (illustration), (detailed light), (an extremely delicate and beautiful),incredibly_absurdres,(glowing),(1girl:1.7),solo,a beautiful girl,(((cowboy shot))),standding,((Hosiery)),((beautiful off-shoulder lace-trimmed layered strapless dress+white stocking):1.25),((Belts)),(leg loops),((Hosiery)),((flower headdress)),((long white hair)),(((beautiful eyes))),BREAK,((english text)),(flower:1.35),(garden),(((border:1.75))),",
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""


power_device = "CPU"

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
        # Disty0/LCM_SoteMix {WIDTH}x{HIGH}
        Currently running on {power_device}.
        """)
        
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )         
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False)

        gr.Examples(
            examples = examples,
            fn = infer,
            inputs = [prompt],
            outputs = [result]
        )

    run_button.click(
        fn = infer,
        inputs = [prompt],
        outputs = [result]
    )

demo.queue().launch()