Spaces:
Runtime error
Runtime error
Upload folder using huggingface_hub
Browse files- .ipynb_checkpoints/run_deploy-checkpoint.ipynb +1122 -0
- requirements.txt +2 -1
- run.py +15 -3
- run_deploy.ipynb +13 -982
.ipynb_checkpoints/run_deploy-checkpoint.ipynb
ADDED
@@ -0,0 +1,1122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "63ab391a",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"# Intro to MLOps using ZenML\n",
|
9 |
+
"\n",
|
10 |
+
"## π Overview\n",
|
11 |
+
"\n",
|
12 |
+
"This repository is a minimalistic MLOps project intended as a starting point to learn how to put ML workflows in production. It features: \n",
|
13 |
+
"\n",
|
14 |
+
"- A feature engineering pipeline that loads data and prepares it for training.\n",
|
15 |
+
"- A training pipeline that loads the preprocessed dataset and trains a model.\n",
|
16 |
+
"- A batch inference pipeline that runs predictions on the trained model with new data.\n",
|
17 |
+
"\n",
|
18 |
+
"Follow along this notebook to understand how you can use ZenML to productionalize your ML workflows!\n",
|
19 |
+
"\n",
|
20 |
+
"<img src=\"_assets/pipeline_overview.png\" width=\"50%\" alt=\"Pipelines Overview\">"
|
21 |
+
]
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"cell_type": "markdown",
|
25 |
+
"id": "8f466b16",
|
26 |
+
"metadata": {},
|
27 |
+
"source": [
|
28 |
+
"## Run on Colab\n",
|
29 |
+
"\n",
|
30 |
+
"You can use Google Colab to see ZenML in action, no signup / installation\n",
|
31 |
+
"required!\n",
|
32 |
+
"\n",
|
33 |
+
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](\n",
|
34 |
+
"https://colab.research.google.com/github/zenml-io/zenml/blob/main/examples/quickstart/quickstart.ipynb)"
|
35 |
+
]
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"cell_type": "markdown",
|
39 |
+
"id": "66b2977c",
|
40 |
+
"metadata": {},
|
41 |
+
"source": [
|
42 |
+
"# πΆ Step 0. Install Requirements\n",
|
43 |
+
"\n",
|
44 |
+
"Let's install ZenML to get started. First we'll install the latest version of\n",
|
45 |
+
"ZenML as well as the `sklearn` integration of ZenML:"
|
46 |
+
]
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"cell_type": "code",
|
50 |
+
"execution_count": null,
|
51 |
+
"id": "ce2f40eb",
|
52 |
+
"metadata": {},
|
53 |
+
"outputs": [],
|
54 |
+
"source": [
|
55 |
+
"!pip install \"zenml[server]\""
|
56 |
+
]
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"cell_type": "code",
|
60 |
+
"execution_count": null,
|
61 |
+
"id": "5aad397e",
|
62 |
+
"metadata": {},
|
63 |
+
"outputs": [],
|
64 |
+
"source": [
|
65 |
+
"from zenml.environment import Environment\n",
|
66 |
+
"\n",
|
67 |
+
"if Environment.in_google_colab():\n",
|
68 |
+
" # Install Cloudflare Tunnel binary\n",
|
69 |
+
" !wget -q https://github.com/cloudflare/cloudflared/releases/latest/download/cloudflared-linux-amd64.deb && dpkg -i cloudflared-linux-amd64.deb\n",
|
70 |
+
"\n",
|
71 |
+
" # Pull required modules from this example\n",
|
72 |
+
" !git clone -b main https://github.com/zenml-io/zenml\n",
|
73 |
+
" !cp -r zenml/examples/quickstart/* .\n",
|
74 |
+
" !rm -rf zenml\n"
|
75 |
+
]
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"cell_type": "code",
|
79 |
+
"execution_count": null,
|
80 |
+
"id": "f76f562e",
|
81 |
+
"metadata": {},
|
82 |
+
"outputs": [],
|
83 |
+
"source": [
|
84 |
+
"!zenml integration install sklearn -y\n",
|
85 |
+
"\n",
|
86 |
+
"import IPython\n",
|
87 |
+
"IPython.Application.instance().kernel.do_shutdown(restart=True)"
|
88 |
+
]
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"cell_type": "markdown",
|
92 |
+
"id": "3b044374",
|
93 |
+
"metadata": {},
|
94 |
+
"source": [
|
95 |
+
"Please wait for the installation to complete before running subsequent cells. At\n",
|
96 |
+
"the end of the installation, the notebook kernel will automatically restart."
|
97 |
+
]
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"cell_type": "markdown",
|
101 |
+
"id": "e3955ff1",
|
102 |
+
"metadata": {},
|
103 |
+
"source": [
|
104 |
+
"Optional: If you are using [ZenML Cloud](https://zenml.io/cloud), execute the following cell with your tenant URL. Otherwise ignore."
|
105 |
+
]
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"cell_type": "code",
|
109 |
+
"execution_count": null,
|
110 |
+
"id": "e2587315",
|
111 |
+
"metadata": {},
|
112 |
+
"outputs": [],
|
113 |
+
"source": [
|
114 |
+
"zenml_server_url = \"PLEASE_UPDATE_ME\" # in the form \"https://URL_TO_SERVER\"\n",
|
115 |
+
"\n",
|
116 |
+
"!zenml connect --url $zenml_server_url"
|
117 |
+
]
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"cell_type": "code",
|
121 |
+
"execution_count": null,
|
122 |
+
"id": "081d5616",
|
123 |
+
"metadata": {},
|
124 |
+
"outputs": [],
|
125 |
+
"source": [
|
126 |
+
"# Initialize ZenML and set the default stack\n",
|
127 |
+
"!zenml init\n",
|
128 |
+
"\n",
|
129 |
+
"!zenml stack set default"
|
130 |
+
]
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"cell_type": "code",
|
134 |
+
"execution_count": null,
|
135 |
+
"id": "79f775f2",
|
136 |
+
"metadata": {},
|
137 |
+
"outputs": [],
|
138 |
+
"source": [
|
139 |
+
"# Do the imports at the top\n",
|
140 |
+
"from typing_extensions import Annotated\n",
|
141 |
+
"from sklearn.datasets import load_breast_cancer\n",
|
142 |
+
"\n",
|
143 |
+
"import random\n",
|
144 |
+
"import pandas as pd\n",
|
145 |
+
"from zenml import step, ExternalArtifact, pipeline, ModelVersion, get_step_context\n",
|
146 |
+
"from zenml.client import Client\n",
|
147 |
+
"from zenml.logger import get_logger\n",
|
148 |
+
"from uuid import UUID\n",
|
149 |
+
"\n",
|
150 |
+
"from typing import Optional, List\n",
|
151 |
+
"\n",
|
152 |
+
"from zenml import pipeline\n",
|
153 |
+
"\n",
|
154 |
+
"from steps import (\n",
|
155 |
+
" data_loader,\n",
|
156 |
+
" data_preprocessor,\n",
|
157 |
+
" data_splitter,\n",
|
158 |
+
" model_evaluator,\n",
|
159 |
+
" inference_preprocessor\n",
|
160 |
+
")\n",
|
161 |
+
"\n",
|
162 |
+
"from zenml.logger import get_logger\n",
|
163 |
+
"\n",
|
164 |
+
"logger = get_logger(__name__)\n",
|
165 |
+
"\n",
|
166 |
+
"# Initialize the ZenML client to fetch objects from the ZenML Server\n",
|
167 |
+
"client = Client()"
|
168 |
+
]
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"cell_type": "markdown",
|
172 |
+
"id": "35e48460",
|
173 |
+
"metadata": {},
|
174 |
+
"source": [
|
175 |
+
"## π₯ Step 1: Load your data and execute feature engineering\n",
|
176 |
+
"\n",
|
177 |
+
"We'll start off by importing our data. In this quickstart we'll be working with\n",
|
178 |
+
"[the Breast Cancer](https://archive.ics.uci.edu/dataset/17/breast+cancer+wisconsin+diagnostic) dataset\n",
|
179 |
+
"which is publicly available on the UCI Machine Learning Repository. The task is a classification\n",
|
180 |
+
"problem, to predict whether a patient is diagnosed with breast cancer or not.\n",
|
181 |
+
"\n",
|
182 |
+
"When you're getting started with a machine learning problem you'll want to do\n",
|
183 |
+
"something similar to this: import your data and get it in the right shape for\n",
|
184 |
+
"your training. ZenML mostly gets out of your way when you're writing your Python\n",
|
185 |
+
"code, as you'll see from the following cell.\n",
|
186 |
+
"\n",
|
187 |
+
"<img src=\".assets/feature_engineering_pipeline.png\" width=\"50%\" alt=\"Feature engineering pipeline\" />"
|
188 |
+
]
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"cell_type": "code",
|
192 |
+
"execution_count": null,
|
193 |
+
"id": "3cd974d1",
|
194 |
+
"metadata": {},
|
195 |
+
"outputs": [],
|
196 |
+
"source": [
|
197 |
+
"@step\n",
|
198 |
+
"def data_loader_simplified(\n",
|
199 |
+
" random_state: int, is_inference: bool = False, target: str = \"target\"\n",
|
200 |
+
") -> Annotated[pd.DataFrame, \"dataset\"]: # We name the dataset \n",
|
201 |
+
" \"\"\"Dataset reader step.\"\"\"\n",
|
202 |
+
" dataset = load_breast_cancer(as_frame=True)\n",
|
203 |
+
" inference_size = int(len(dataset.target) * 0.05)\n",
|
204 |
+
" dataset: pd.DataFrame = dataset.frame\n",
|
205 |
+
" inference_subset = dataset.sample(inference_size, random_state=random_state)\n",
|
206 |
+
" if is_inference:\n",
|
207 |
+
" dataset = inference_subset\n",
|
208 |
+
" dataset.drop(columns=target, inplace=True)\n",
|
209 |
+
" else:\n",
|
210 |
+
" dataset.drop(inference_subset.index, inplace=True)\n",
|
211 |
+
" dataset.reset_index(drop=True, inplace=True)\n",
|
212 |
+
" logger.info(f\"Dataset with {len(dataset)} records loaded!\")\n",
|
213 |
+
" return dataset\n"
|
214 |
+
]
|
215 |
+
},
|
216 |
+
{
|
217 |
+
"cell_type": "markdown",
|
218 |
+
"id": "1e8ba4c6",
|
219 |
+
"metadata": {},
|
220 |
+
"source": [
|
221 |
+
"The whole function is decorated with the `@step` decorator, which\n",
|
222 |
+
"tells ZenML to track this function as a step in the pipeline. This means that\n",
|
223 |
+
"ZenML will automatically version, track, and cache the data that is produced by\n",
|
224 |
+
"this function as an `artifact`. This is a very powerful feature, as it means that you can\n",
|
225 |
+
"reproduce your data at any point in the future, even if the original data source\n",
|
226 |
+
"changes or disappears. \n",
|
227 |
+
"\n",
|
228 |
+
"Note the use of the `typing` module's `Annotated` type hint in the output of the\n",
|
229 |
+
"step. We're using this to give a name to the output of the step, which will make\n",
|
230 |
+
"it possible to access it via a keyword later on.\n",
|
231 |
+
"\n",
|
232 |
+
"You'll also notice that we have included type hints for the outputs\n",
|
233 |
+
"to the function. These are not only useful for anyone reading your code, but\n",
|
234 |
+
"help ZenML process your data in a way appropriate to the specific data types."
|
235 |
+
]
|
236 |
+
},
|
237 |
+
{
|
238 |
+
"cell_type": "markdown",
|
239 |
+
"id": "b6286b67",
|
240 |
+
"metadata": {},
|
241 |
+
"source": [
|
242 |
+
"ZenML is built in a way that allows you to experiment with your data and build\n",
|
243 |
+
"your pipelines as you work, so if you want to call this function to see how it\n",
|
244 |
+
"works, you can just call it directly. Here we take a look at the first few rows\n",
|
245 |
+
"of your training dataset."
|
246 |
+
]
|
247 |
+
},
|
248 |
+
{
|
249 |
+
"cell_type": "code",
|
250 |
+
"execution_count": null,
|
251 |
+
"id": "d838e2ea",
|
252 |
+
"metadata": {},
|
253 |
+
"outputs": [],
|
254 |
+
"source": [
|
255 |
+
"df = data_loader_simplified(random_state=42)\n",
|
256 |
+
"df.head()"
|
257 |
+
]
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"cell_type": "markdown",
|
261 |
+
"id": "28c05291",
|
262 |
+
"metadata": {},
|
263 |
+
"source": [
|
264 |
+
"Everything looks as we'd expect and the values are all in the right format π₯³.\n",
|
265 |
+
"\n",
|
266 |
+
"We're now at the point where can bring this step (and some others) together into a single\n",
|
267 |
+
"pipeline, the top-level organising entity for code in ZenML. Creating such a pipeline is\n",
|
268 |
+
"as simple as adding a `@pipeline` decorator to a function. This specific\n",
|
269 |
+
"pipeline doesn't return a value, but that option is available to you if you need."
|
270 |
+
]
|
271 |
+
},
|
272 |
+
{
|
273 |
+
"cell_type": "code",
|
274 |
+
"execution_count": null,
|
275 |
+
"id": "b50a9537",
|
276 |
+
"metadata": {},
|
277 |
+
"outputs": [],
|
278 |
+
"source": [
|
279 |
+
"@pipeline\n",
|
280 |
+
"def feature_engineering(\n",
|
281 |
+
" test_size: float = 0.3,\n",
|
282 |
+
" drop_na: Optional[bool] = None,\n",
|
283 |
+
" normalize: Optional[bool] = None,\n",
|
284 |
+
" drop_columns: Optional[List[str]] = None,\n",
|
285 |
+
" target: Optional[str] = \"target\",\n",
|
286 |
+
" random_state: int = 17\n",
|
287 |
+
"):\n",
|
288 |
+
" \"\"\"Feature engineering pipeline.\"\"\"\n",
|
289 |
+
" # Link all the steps together by calling them and passing the output\n",
|
290 |
+
" # of one step as the input of the next step.\n",
|
291 |
+
" raw_data = data_loader(random_state=random_state, target=target)\n",
|
292 |
+
" dataset_trn, dataset_tst = data_splitter(\n",
|
293 |
+
" dataset=raw_data,\n",
|
294 |
+
" test_size=test_size,\n",
|
295 |
+
" )\n",
|
296 |
+
" dataset_trn, dataset_tst, _ = data_preprocessor(\n",
|
297 |
+
" dataset_trn=dataset_trn,\n",
|
298 |
+
" dataset_tst=dataset_tst,\n",
|
299 |
+
" drop_na=drop_na,\n",
|
300 |
+
" normalize=normalize,\n",
|
301 |
+
" drop_columns=drop_columns,\n",
|
302 |
+
" target=target,\n",
|
303 |
+
" random_state=random_state,\n",
|
304 |
+
" )"
|
305 |
+
]
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"cell_type": "markdown",
|
309 |
+
"id": "7cd73c23",
|
310 |
+
"metadata": {},
|
311 |
+
"source": [
|
312 |
+
"We're ready to run the pipeline now, which we can do just as with the step - by calling the\n",
|
313 |
+
"pipeline function itself:"
|
314 |
+
]
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"cell_type": "code",
|
318 |
+
"execution_count": null,
|
319 |
+
"id": "1e0aa9af",
|
320 |
+
"metadata": {},
|
321 |
+
"outputs": [],
|
322 |
+
"source": [
|
323 |
+
"feature_engineering()"
|
324 |
+
]
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"cell_type": "markdown",
|
328 |
+
"id": "1785c303",
|
329 |
+
"metadata": {},
|
330 |
+
"source": [
|
331 |
+
"Let's run this again with a slightly different test size, to create more datasets:"
|
332 |
+
]
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"cell_type": "code",
|
336 |
+
"execution_count": null,
|
337 |
+
"id": "658c0570-2607-4b97-a72d-d45c92633e48",
|
338 |
+
"metadata": {},
|
339 |
+
"outputs": [],
|
340 |
+
"source": [
|
341 |
+
"feature_engineering(test_size=0.25)"
|
342 |
+
]
|
343 |
+
},
|
344 |
+
{
|
345 |
+
"cell_type": "markdown",
|
346 |
+
"id": "64bb7206",
|
347 |
+
"metadata": {},
|
348 |
+
"source": [
|
349 |
+
"Notice the second time around, the data loader step was **cached**, while the rest of the pipeline was rerun. \n",
|
350 |
+
"This is because ZenML automatically determined that nothing had changed in the data loader step, \n",
|
351 |
+
"so it didn't need to rerun it."
|
352 |
+
]
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"cell_type": "markdown",
|
356 |
+
"id": "5bc6849d-31ac-4c08-9ca2-cf7f5f35ccbf",
|
357 |
+
"metadata": {},
|
358 |
+
"source": [
|
359 |
+
"Let's run this again with a slightly different test size and random state, to disable the cache and to create more datasets:"
|
360 |
+
]
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"cell_type": "code",
|
364 |
+
"execution_count": null,
|
365 |
+
"id": "1e1d8546",
|
366 |
+
"metadata": {},
|
367 |
+
"outputs": [],
|
368 |
+
"source": [
|
369 |
+
"feature_engineering(test_size=0.25, random_state=104)"
|
370 |
+
]
|
371 |
+
},
|
372 |
+
{
|
373 |
+
"cell_type": "markdown",
|
374 |
+
"id": "6c42078a",
|
375 |
+
"metadata": {},
|
376 |
+
"source": [
|
377 |
+
"At this point you might be interested to view your pipeline runs in the ZenML\n",
|
378 |
+
"Dashboard. In case you are not using a hosted instance of ZenML, you can spin this up by executing the next cell. This will start a\n",
|
379 |
+
"server which you can access by clicking on the link that appears in the output\n",
|
380 |
+
"of the cell.\n",
|
381 |
+
"\n",
|
382 |
+
"Log into the Dashboard using default credentials (username 'default' and\n",
|
383 |
+
"password left blank). From there you can inspect the pipeline or the specific\n",
|
384 |
+
"pipeline run.\n"
|
385 |
+
]
|
386 |
+
},
|
387 |
+
{
|
388 |
+
"cell_type": "code",
|
389 |
+
"execution_count": null,
|
390 |
+
"id": "8cd3cc8c",
|
391 |
+
"metadata": {},
|
392 |
+
"outputs": [],
|
393 |
+
"source": [
|
394 |
+
"from zenml.environment import Environment\n",
|
395 |
+
"from zenml.zen_stores.rest_zen_store import RestZenStore\n",
|
396 |
+
"\n",
|
397 |
+
"\n",
|
398 |
+
"if not isinstance(client.zen_store, RestZenStore):\n",
|
399 |
+
" # Only spin up a local Dashboard in case you aren't already connected to a remote server\n",
|
400 |
+
" if Environment.in_google_colab():\n",
|
401 |
+
" # run ZenML through a cloudflare tunnel to get a public endpoint\n",
|
402 |
+
" !zenml up --port 8237 & cloudflared tunnel --url http://localhost:8237\n",
|
403 |
+
" else:\n",
|
404 |
+
" !zenml up"
|
405 |
+
]
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"cell_type": "markdown",
|
409 |
+
"id": "e8471f93",
|
410 |
+
"metadata": {},
|
411 |
+
"source": [
|
412 |
+
"We can also fetch the pipeline from the server and view the results directly in the notebook:"
|
413 |
+
]
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"cell_type": "code",
|
417 |
+
"execution_count": null,
|
418 |
+
"id": "f208b200",
|
419 |
+
"metadata": {},
|
420 |
+
"outputs": [],
|
421 |
+
"source": [
|
422 |
+
"client = Client()\n",
|
423 |
+
"run = client.get_pipeline(\"feature_engineering\").last_run\n",
|
424 |
+
"print(run.name)"
|
425 |
+
]
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"cell_type": "markdown",
|
429 |
+
"id": "a037f09d",
|
430 |
+
"metadata": {},
|
431 |
+
"source": [
|
432 |
+
"We can also see the data artifacts that were produced by the last step of the pipeline:"
|
433 |
+
]
|
434 |
+
},
|
435 |
+
{
|
436 |
+
"cell_type": "code",
|
437 |
+
"execution_count": null,
|
438 |
+
"id": "34283e89",
|
439 |
+
"metadata": {},
|
440 |
+
"outputs": [],
|
441 |
+
"source": [
|
442 |
+
"run.steps[\"data_preprocessor\"].outputs"
|
443 |
+
]
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"cell_type": "code",
|
447 |
+
"execution_count": null,
|
448 |
+
"id": "bceb0312",
|
449 |
+
"metadata": {},
|
450 |
+
"outputs": [],
|
451 |
+
"source": [
|
452 |
+
"# Read one of the datasets. This is the one with a 0.25 test split\n",
|
453 |
+
"run.steps[\"data_preprocessor\"].outputs[\"dataset_trn\"].load()"
|
454 |
+
]
|
455 |
+
},
|
456 |
+
{
|
457 |
+
"cell_type": "markdown",
|
458 |
+
"id": "26d26436",
|
459 |
+
"metadata": {},
|
460 |
+
"source": [
|
461 |
+
"We can also get the artifacts directly. Each time you create a new pipeline run, a new `artifact version` is created.\n",
|
462 |
+
"\n",
|
463 |
+
"You can fetch these artifact and their versions using the `client`: "
|
464 |
+
]
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"cell_type": "code",
|
468 |
+
"execution_count": null,
|
469 |
+
"id": "c8f90647",
|
470 |
+
"metadata": {},
|
471 |
+
"outputs": [],
|
472 |
+
"source": [
|
473 |
+
"# Get artifact version from our run\n",
|
474 |
+
"dataset_trn_artifact_version_via_run = run.steps[\"data_preprocessor\"].outputs[\"dataset_trn\"] \n",
|
475 |
+
"\n",
|
476 |
+
"# Get latest version from client directly\n",
|
477 |
+
"dataset_trn_artifact_version = client.get_artifact_version(\"dataset_trn\")\n",
|
478 |
+
"\n",
|
479 |
+
"# This should be true if our run is the latest run and no artifact has been produced\n",
|
480 |
+
"# in the intervening time\n",
|
481 |
+
"dataset_trn_artifact_version_via_run.id == dataset_trn_artifact_version.id"
|
482 |
+
]
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"cell_type": "code",
|
486 |
+
"execution_count": null,
|
487 |
+
"id": "3f9d3dfd",
|
488 |
+
"metadata": {},
|
489 |
+
"outputs": [],
|
490 |
+
"source": [
|
491 |
+
"# Fetch the rest of the artifacts\n",
|
492 |
+
"dataset_tst_artifact_version = client.get_artifact_version(\"dataset_tst\")\n",
|
493 |
+
"preprocessing_pipeline_artifact_version = client.get_artifact_version(\"preprocess_pipeline\")"
|
494 |
+
]
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"cell_type": "markdown",
|
498 |
+
"id": "7a7d1b04",
|
499 |
+
"metadata": {},
|
500 |
+
"source": [
|
501 |
+
"If you started with a fresh install, then you would have two versions corresponding\n",
|
502 |
+
"to the two pipelines that we ran above. We can even load a artifact version in memory: "
|
503 |
+
]
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"cell_type": "code",
|
507 |
+
"execution_count": null,
|
508 |
+
"id": "c82aca75",
|
509 |
+
"metadata": {},
|
510 |
+
"outputs": [],
|
511 |
+
"source": [
|
512 |
+
"# Load an artifact to verify you can fetch it\n",
|
513 |
+
"dataset_trn_artifact_version.load()"
|
514 |
+
]
|
515 |
+
},
|
516 |
+
{
|
517 |
+
"cell_type": "markdown",
|
518 |
+
"id": "5963509e",
|
519 |
+
"metadata": {},
|
520 |
+
"source": [
|
521 |
+
"We'll use these artifacts from above in our next pipeline"
|
522 |
+
]
|
523 |
+
},
|
524 |
+
{
|
525 |
+
"cell_type": "markdown",
|
526 |
+
"id": "8c28b474",
|
527 |
+
"metadata": {},
|
528 |
+
"source": [
|
529 |
+
"# β Step 2: Training pipeline"
|
530 |
+
]
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"cell_type": "markdown",
|
534 |
+
"id": "87909827",
|
535 |
+
"metadata": {},
|
536 |
+
"source": [
|
537 |
+
"Now that we have our data it makes sense to train some models to get a sense of\n",
|
538 |
+
"how difficult the task is. The Breast Cancer dataset is sufficiently large and complex \n",
|
539 |
+
"that it's unlikely we'll be able to train a model that behaves perfectly since the problem \n",
|
540 |
+
"is inherently complex, but we can get a sense of what a reasonable baseline looks like.\n",
|
541 |
+
"\n",
|
542 |
+
"We'll start with two simple models, a SGD Classifier and a Random Forest\n",
|
543 |
+
"Classifier, both batteries-included from `sklearn`. We'll train them both on the\n",
|
544 |
+
"same data and then compare their performance.\n",
|
545 |
+
"\n",
|
546 |
+
"<img src=\".assets/training_pipeline.png\" width=\"50%\" alt=\"Training pipeline\">"
|
547 |
+
]
|
548 |
+
},
|
549 |
+
{
|
550 |
+
"cell_type": "code",
|
551 |
+
"execution_count": null,
|
552 |
+
"id": "fccf1bd9",
|
553 |
+
"metadata": {},
|
554 |
+
"outputs": [],
|
555 |
+
"source": [
|
556 |
+
"import pandas as pd\n",
|
557 |
+
"from sklearn.base import ClassifierMixin\n",
|
558 |
+
"from sklearn.ensemble import RandomForestClassifier\n",
|
559 |
+
"from sklearn.linear_model import SGDClassifier\n",
|
560 |
+
"from typing_extensions import Annotated\n",
|
561 |
+
"from zenml import ArtifactConfig, step\n",
|
562 |
+
"from zenml.logger import get_logger\n",
|
563 |
+
"\n",
|
564 |
+
"logger = get_logger(__name__)\n",
|
565 |
+
"\n",
|
566 |
+
"\n",
|
567 |
+
"@step\n",
|
568 |
+
"def model_trainer(\n",
|
569 |
+
" dataset_trn: pd.DataFrame,\n",
|
570 |
+
" model_type: str = \"sgd\",\n",
|
571 |
+
") -> Annotated[ClassifierMixin, ArtifactConfig(name=\"sklearn_classifier\", is_model_artifact=True)]:\n",
|
572 |
+
" \"\"\"Configure and train a model on the training dataset.\"\"\"\n",
|
573 |
+
" target = \"target\"\n",
|
574 |
+
" if model_type == \"sgd\":\n",
|
575 |
+
" model = SGDClassifier()\n",
|
576 |
+
" elif model_type == \"rf\":\n",
|
577 |
+
" model = RandomForestClassifier()\n",
|
578 |
+
" else:\n",
|
579 |
+
" raise ValueError(f\"Unknown model type {model_type}\") \n",
|
580 |
+
"\n",
|
581 |
+
" logger.info(f\"Training model {model}...\")\n",
|
582 |
+
"\n",
|
583 |
+
" model.fit(\n",
|
584 |
+
" dataset_trn.drop(columns=[target]),\n",
|
585 |
+
" dataset_trn[target],\n",
|
586 |
+
" )\n",
|
587 |
+
" return model\n"
|
588 |
+
]
|
589 |
+
},
|
590 |
+
{
|
591 |
+
"cell_type": "markdown",
|
592 |
+
"id": "73a00008",
|
593 |
+
"metadata": {},
|
594 |
+
"source": [
|
595 |
+
"Our two training steps both return different kinds of `sklearn` classifier\n",
|
596 |
+
"models, so we use the generic `ClassifierMixin` type hint for the return type."
|
597 |
+
]
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"cell_type": "markdown",
|
601 |
+
"id": "a5f22174",
|
602 |
+
"metadata": {},
|
603 |
+
"source": [
|
604 |
+
"ZenML allows you to load any version of any dataset that is tracked by the framework\n",
|
605 |
+
"directly into a pipeline using the `ExternalArtifact` interface. This is very convenient\n",
|
606 |
+
"in this case, as we'd like to send our preprocessed dataset from the older pipeline directly\n",
|
607 |
+
"into the training pipeline."
|
608 |
+
]
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"cell_type": "code",
|
612 |
+
"execution_count": null,
|
613 |
+
"id": "1aa98f2f",
|
614 |
+
"metadata": {},
|
615 |
+
"outputs": [],
|
616 |
+
"source": [
|
617 |
+
"@pipeline\n",
|
618 |
+
"def training(\n",
|
619 |
+
" train_dataset_id: Optional[UUID] = None,\n",
|
620 |
+
" test_dataset_id: Optional[UUID] = None,\n",
|
621 |
+
" model_type: str = \"sgd\",\n",
|
622 |
+
" min_train_accuracy: float = 0.0,\n",
|
623 |
+
" min_test_accuracy: float = 0.0,\n",
|
624 |
+
"):\n",
|
625 |
+
" \"\"\"Model training pipeline.\"\"\" \n",
|
626 |
+
" if train_dataset_id is None or test_dataset_id is None:\n",
|
627 |
+
" # If we dont pass the IDs, this will run the feature engineering pipeline \n",
|
628 |
+
" dataset_trn, dataset_tst = feature_engineering()\n",
|
629 |
+
" else:\n",
|
630 |
+
" # Load the datasets from an older pipeline\n",
|
631 |
+
" dataset_trn = ExternalArtifact(id=train_dataset_id)\n",
|
632 |
+
" dataset_tst = ExternalArtifact(id=test_dataset_id) \n",
|
633 |
+
"\n",
|
634 |
+
" trained_model = model_trainer(\n",
|
635 |
+
" dataset_trn=dataset_trn,\n",
|
636 |
+
" model_type=model_type,\n",
|
637 |
+
" )\n",
|
638 |
+
"\n",
|
639 |
+
" model_evaluator(\n",
|
640 |
+
" model=trained_model,\n",
|
641 |
+
" dataset_trn=dataset_trn,\n",
|
642 |
+
" dataset_tst=dataset_tst,\n",
|
643 |
+
" min_train_accuracy=min_train_accuracy,\n",
|
644 |
+
" min_test_accuracy=min_test_accuracy,\n",
|
645 |
+
" )"
|
646 |
+
]
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"cell_type": "markdown",
|
650 |
+
"id": "88b70fd3",
|
651 |
+
"metadata": {},
|
652 |
+
"source": [
|
653 |
+
"The end goal of this quick baseline evaluation is to understand which of the two\n",
|
654 |
+
"models performs better. We'll use the `evaluator` step to compare the two\n",
|
655 |
+
"models. This step takes in the model from the trainer step, and computes its score\n",
|
656 |
+
"over the testing set."
|
657 |
+
]
|
658 |
+
},
|
659 |
+
{
|
660 |
+
"cell_type": "code",
|
661 |
+
"execution_count": null,
|
662 |
+
"id": "c64885ac",
|
663 |
+
"metadata": {},
|
664 |
+
"outputs": [],
|
665 |
+
"source": [
|
666 |
+
"# Use a random forest model with the chosen datasets.\n",
|
667 |
+
"# We need to pass the ID's of the datasets into the function\n",
|
668 |
+
"training(\n",
|
669 |
+
" model_type=\"rf\",\n",
|
670 |
+
" train_dataset_id=dataset_trn_artifact_version.id,\n",
|
671 |
+
" test_dataset_id=dataset_tst_artifact_version.id\n",
|
672 |
+
")\n",
|
673 |
+
"\n",
|
674 |
+
"rf_run = client.get_pipeline(\"training\").last_run"
|
675 |
+
]
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"cell_type": "code",
|
679 |
+
"execution_count": null,
|
680 |
+
"id": "4300c82f",
|
681 |
+
"metadata": {},
|
682 |
+
"outputs": [],
|
683 |
+
"source": [
|
684 |
+
"# Use a SGD classifier\n",
|
685 |
+
"sgd_run = training(\n",
|
686 |
+
" model_type=\"sgd\",\n",
|
687 |
+
" train_dataset_id=dataset_trn_artifact_version.id,\n",
|
688 |
+
" test_dataset_id=dataset_tst_artifact_version.id\n",
|
689 |
+
")\n",
|
690 |
+
"\n",
|
691 |
+
"sgd_run = client.get_pipeline(\"training\").last_run"
|
692 |
+
]
|
693 |
+
},
|
694 |
+
{
|
695 |
+
"cell_type": "markdown",
|
696 |
+
"id": "43f1a68a",
|
697 |
+
"metadata": {},
|
698 |
+
"source": [
|
699 |
+
"You can see from the logs already how our model training went: the\n",
|
700 |
+
"`RandomForestClassifier` performed considerably better than the `SGDClassifier`.\n",
|
701 |
+
"We can use the ZenML `Client` to verify this:"
|
702 |
+
]
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"cell_type": "code",
|
706 |
+
"execution_count": null,
|
707 |
+
"id": "d95810b1",
|
708 |
+
"metadata": {},
|
709 |
+
"outputs": [],
|
710 |
+
"source": [
|
711 |
+
"# The evaluator returns a float value with the accuracy\n",
|
712 |
+
"rf_run.steps[\"model_evaluator\"].output.load() > sgd_run.steps[\"model_evaluator\"].output.load()"
|
713 |
+
]
|
714 |
+
},
|
715 |
+
{
|
716 |
+
"cell_type": "markdown",
|
717 |
+
"id": "e256d145",
|
718 |
+
"metadata": {},
|
719 |
+
"source": [
|
720 |
+
"# π― Step 3: Associating a model with your pipeline"
|
721 |
+
]
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"cell_type": "markdown",
|
725 |
+
"id": "927978f3",
|
726 |
+
"metadata": {},
|
727 |
+
"source": [
|
728 |
+
"You can see it is relatively easy to train ML models using ZenML pipelines. But it can be somewhat clunky to track\n",
|
729 |
+
"all the models produced as you develop your experiments and use-cases. Luckily, ZenML offers a *Model Control Plane*,\n",
|
730 |
+
"which is a central register of all your ML models.\n",
|
731 |
+
"\n",
|
732 |
+
"You can easily create a ZenML `Model` and associate it with your pipelines using the `ModelVersion` object:"
|
733 |
+
]
|
734 |
+
},
|
735 |
+
{
|
736 |
+
"cell_type": "code",
|
737 |
+
"execution_count": null,
|
738 |
+
"id": "99ca00c0",
|
739 |
+
"metadata": {},
|
740 |
+
"outputs": [],
|
741 |
+
"source": [
|
742 |
+
"pipeline_settings = {}\n",
|
743 |
+
"\n",
|
744 |
+
"# Lets add some metadata to the model to make it identifiable\n",
|
745 |
+
"pipeline_settings[\"model_version\"] = ModelVersion(\n",
|
746 |
+
" name=\"breast_cancer_classifier\",\n",
|
747 |
+
" license=\"Apache 2.0\",\n",
|
748 |
+
" description=\"A breast cancer classifier\",\n",
|
749 |
+
" tags=[\"breast_cancer\", \"classifier\"],\n",
|
750 |
+
")"
|
751 |
+
]
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"cell_type": "code",
|
755 |
+
"execution_count": null,
|
756 |
+
"id": "0e78a520",
|
757 |
+
"metadata": {},
|
758 |
+
"outputs": [],
|
759 |
+
"source": [
|
760 |
+
"# Let's train the SGD model and set the version name to \"sgd\"\n",
|
761 |
+
"pipeline_settings[\"model_version\"].version = \"sgd\"\n",
|
762 |
+
"\n",
|
763 |
+
"# the `with_options` method allows us to pass in pipeline settings\n",
|
764 |
+
"# and returns a configured pipeline\n",
|
765 |
+
"training_configured = training.with_options(**pipeline_settings)\n",
|
766 |
+
"\n",
|
767 |
+
"# We can now run this as usual\n",
|
768 |
+
"training_configured(\n",
|
769 |
+
" model_type=\"sgd\",\n",
|
770 |
+
" train_dataset_id=dataset_trn_artifact_version.id,\n",
|
771 |
+
" test_dataset_id=dataset_tst_artifact_version.id\n",
|
772 |
+
")"
|
773 |
+
]
|
774 |
+
},
|
775 |
+
{
|
776 |
+
"cell_type": "code",
|
777 |
+
"execution_count": null,
|
778 |
+
"id": "9b8e0002",
|
779 |
+
"metadata": {},
|
780 |
+
"outputs": [],
|
781 |
+
"source": [
|
782 |
+
"# Let's train the RF model and set the version name to \"rf\"\n",
|
783 |
+
"pipeline_settings[\"model_version\"].version = \"rf\"\n",
|
784 |
+
"\n",
|
785 |
+
"# the `with_options` method allows us to pass in pipeline settings\n",
|
786 |
+
"# and returns a configured pipeline\n",
|
787 |
+
"training_configured = training.with_options(**pipeline_settings)\n",
|
788 |
+
"\n",
|
789 |
+
"# Let's run it again to make sure we have two versions\n",
|
790 |
+
"training_configured(\n",
|
791 |
+
" model_type=\"rf\",\n",
|
792 |
+
" train_dataset_id=dataset_trn_artifact_version.id,\n",
|
793 |
+
" test_dataset_id=dataset_tst_artifact_version.id\n",
|
794 |
+
")"
|
795 |
+
]
|
796 |
+
},
|
797 |
+
{
|
798 |
+
"cell_type": "markdown",
|
799 |
+
"id": "09597223",
|
800 |
+
"metadata": {},
|
801 |
+
"source": [
|
802 |
+
"This time, running both pipelines has created two associated **model versions**.\n",
|
803 |
+
"You can list your ZenML model and their versions as follows:"
|
804 |
+
]
|
805 |
+
},
|
806 |
+
{
|
807 |
+
"cell_type": "code",
|
808 |
+
"execution_count": null,
|
809 |
+
"id": "fbb25913",
|
810 |
+
"metadata": {},
|
811 |
+
"outputs": [],
|
812 |
+
"source": [
|
813 |
+
"zenml_model = client.get_model(\"breast_cancer_classifier\")\n",
|
814 |
+
"print(zenml_model)\n",
|
815 |
+
"\n",
|
816 |
+
"print(f\"Model {zenml_model.name} has {len(zenml_model.versions)} versions\")\n",
|
817 |
+
"\n",
|
818 |
+
"zenml_model.versions[0].version, zenml_model.versions[1].version"
|
819 |
+
]
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"cell_type": "markdown",
|
823 |
+
"id": "e82cfac2",
|
824 |
+
"metadata": {},
|
825 |
+
"source": [
|
826 |
+
"The interesting part is that ZenML went ahead and linked all artifacts produced by the\n",
|
827 |
+
"pipelines to that model version, including the two pickle files that represent our\n",
|
828 |
+
"SGD and RandomForest classifier. We can see all artifacts directly from the model\n",
|
829 |
+
"version object:"
|
830 |
+
]
|
831 |
+
},
|
832 |
+
{
|
833 |
+
"cell_type": "code",
|
834 |
+
"execution_count": null,
|
835 |
+
"id": "31211413",
|
836 |
+
"metadata": {},
|
837 |
+
"outputs": [],
|
838 |
+
"source": [
|
839 |
+
"# Let's load the RF version\n",
|
840 |
+
"rf_zenml_model_version = client.get_model_version(\"breast_cancer_classifier\", \"rf\")\n",
|
841 |
+
"\n",
|
842 |
+
"# We can now load our classifier directly as well\n",
|
843 |
+
"random_forest_classifier = rf_zenml_model_version.get_artifact(\"sklearn_classifier\").load()\n",
|
844 |
+
"\n",
|
845 |
+
"random_forest_classifier"
|
846 |
+
]
|
847 |
+
},
|
848 |
+
{
|
849 |
+
"cell_type": "markdown",
|
850 |
+
"id": "53517a9a",
|
851 |
+
"metadata": {},
|
852 |
+
"source": [
|
853 |
+
"If you are a [ZenML Cloud](https://zenml.io/cloud) user, you can see all of this visualized in the dashboard:\n",
|
854 |
+
"\n",
|
855 |
+
"<img src=\".assets/cloud_mcp_screenshot.png\" width=\"70%\" alt=\"Model Control Plane\">"
|
856 |
+
]
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"cell_type": "markdown",
|
860 |
+
"id": "eb645dde",
|
861 |
+
"metadata": {},
|
862 |
+
"source": [
|
863 |
+
"There is a lot more you can do with ZenML models, including the ability to\n",
|
864 |
+
"track metrics by adding metadata to it, or having them persist in a model\n",
|
865 |
+
"registry. However, these topics can be explored more in the\n",
|
866 |
+
"[ZenML docs](https://docs.zenml.io).\n",
|
867 |
+
"\n",
|
868 |
+
"For now, we will use the ZenML model control plane to promote our best\n",
|
869 |
+
"model to `production`. You can do this by simply setting the `stage` of\n",
|
870 |
+
"your chosen model version to the `production` tag."
|
871 |
+
]
|
872 |
+
},
|
873 |
+
{
|
874 |
+
"cell_type": "code",
|
875 |
+
"execution_count": null,
|
876 |
+
"id": "26b718f8",
|
877 |
+
"metadata": {},
|
878 |
+
"outputs": [],
|
879 |
+
"source": [
|
880 |
+
"# Set our best classifier to production\n",
|
881 |
+
"rf_zenml_model_version.set_stage(\"production\", force=True)"
|
882 |
+
]
|
883 |
+
},
|
884 |
+
{
|
885 |
+
"cell_type": "markdown",
|
886 |
+
"id": "9fddf3d0",
|
887 |
+
"metadata": {},
|
888 |
+
"source": [
|
889 |
+
"Of course, normally one would only promote the model by comparing to all other model\n",
|
890 |
+
"versions and doing some other tests. But that's a bit more advanced use-case. See the\n",
|
891 |
+
"[e2e_batch example](https://github.com/zenml-io/zenml/tree/main/examples/e2e) to get\n",
|
892 |
+
"more insight into that sort of flow!"
|
893 |
+
]
|
894 |
+
},
|
895 |
+
{
|
896 |
+
"cell_type": "markdown",
|
897 |
+
"id": "2ecbc8cf",
|
898 |
+
"metadata": {},
|
899 |
+
"source": [
|
900 |
+
"<img src=\".assets/cloud_mcp.png\" width=\"60%\" alt=\"Model Control Plane\">"
|
901 |
+
]
|
902 |
+
},
|
903 |
+
{
|
904 |
+
"cell_type": "markdown",
|
905 |
+
"id": "8f1146db",
|
906 |
+
"metadata": {},
|
907 |
+
"source": [
|
908 |
+
"Once the model is promoted, we can now consume the right model version in our\n",
|
909 |
+
"batch inference pipeline directly. Let's see how that works."
|
910 |
+
]
|
911 |
+
},
|
912 |
+
{
|
913 |
+
"cell_type": "markdown",
|
914 |
+
"id": "d6306f14",
|
915 |
+
"metadata": {},
|
916 |
+
"source": [
|
917 |
+
"# π«
Step 4: Consuming the model in production"
|
918 |
+
]
|
919 |
+
},
|
920 |
+
{
|
921 |
+
"cell_type": "markdown",
|
922 |
+
"id": "b51f3108",
|
923 |
+
"metadata": {},
|
924 |
+
"source": [
|
925 |
+
"The batch inference pipeline simply takes the model marked as `production` and runs inference on it\n",
|
926 |
+
"with `live data`. The critical step here is the `inference_predict` step, where we load the model in memory\n",
|
927 |
+
"and generate predictions:\n",
|
928 |
+
"\n",
|
929 |
+
"<img src=\".assets/inference_pipeline.png\" width=\"45%\" alt=\"Inference pipeline\">"
|
930 |
+
]
|
931 |
+
},
|
932 |
+
{
|
933 |
+
"cell_type": "code",
|
934 |
+
"execution_count": null,
|
935 |
+
"id": "92c4c7dc",
|
936 |
+
"metadata": {},
|
937 |
+
"outputs": [],
|
938 |
+
"source": [
|
939 |
+
"@step\n",
|
940 |
+
"def inference_predict(dataset_inf: pd.DataFrame) -> Annotated[pd.Series, \"predictions\"]:\n",
|
941 |
+
" \"\"\"Predictions step\"\"\"\n",
|
942 |
+
" # Get the model_version\n",
|
943 |
+
" model_version = get_step_context().model_version\n",
|
944 |
+
"\n",
|
945 |
+
" # run prediction from memory\n",
|
946 |
+
" predictor = model_version.load_artifact(\"sklearn_classifier\")\n",
|
947 |
+
" predictions = predictor.predict(dataset_inf)\n",
|
948 |
+
"\n",
|
949 |
+
" predictions = pd.Series(predictions, name=\"predicted\")\n",
|
950 |
+
"\n",
|
951 |
+
" return predictions\n"
|
952 |
+
]
|
953 |
+
},
|
954 |
+
{
|
955 |
+
"cell_type": "markdown",
|
956 |
+
"id": "3aeb227b",
|
957 |
+
"metadata": {},
|
958 |
+
"source": [
|
959 |
+
"Apart from the loading the model, we must also load the preprocessing pipeline that we ran in feature engineering,\n",
|
960 |
+
"so that we can do the exact steps that we did on training time, in inference time. Let's bring it all together:"
|
961 |
+
]
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"cell_type": "code",
|
965 |
+
"execution_count": null,
|
966 |
+
"id": "37c409bd",
|
967 |
+
"metadata": {},
|
968 |
+
"outputs": [],
|
969 |
+
"source": [
|
970 |
+
"@pipeline\n",
|
971 |
+
"def inference(preprocess_pipeline_id: UUID):\n",
|
972 |
+
" \"\"\"Model batch inference pipeline\"\"\"\n",
|
973 |
+
" # random_state = client.get_artifact_version(id=preprocess_pipeline_id).metadata[\"random_state\"].value\n",
|
974 |
+
" # target = client.get_artifact_version(id=preprocess_pipeline_id).run_metadata['target'].value\n",
|
975 |
+
" random_state = 42\n",
|
976 |
+
" target = \"target\"\n",
|
977 |
+
"\n",
|
978 |
+
" df_inference = data_loader(\n",
|
979 |
+
" random_state=random_state, is_inference=True\n",
|
980 |
+
" )\n",
|
981 |
+
" df_inference = inference_preprocessor(\n",
|
982 |
+
" dataset_inf=df_inference,\n",
|
983 |
+
" # We use the preprocess pipeline from the feature engineering pipeline\n",
|
984 |
+
" preprocess_pipeline=ExternalArtifact(id=preprocess_pipeline_id),\n",
|
985 |
+
" target=target,\n",
|
986 |
+
" )\n",
|
987 |
+
" inference_predict(\n",
|
988 |
+
" dataset_inf=df_inference,\n",
|
989 |
+
" )\n"
|
990 |
+
]
|
991 |
+
},
|
992 |
+
{
|
993 |
+
"cell_type": "markdown",
|
994 |
+
"id": "c7afe7be",
|
995 |
+
"metadata": {},
|
996 |
+
"source": [
|
997 |
+
"The way to load the right model is to pass in the `production` stage into the `ModelVersion` config this time.\n",
|
998 |
+
"This will ensure to always load the production model, decoupled from all other pipelines:"
|
999 |
+
]
|
1000 |
+
},
|
1001 |
+
{
|
1002 |
+
"cell_type": "code",
|
1003 |
+
"execution_count": null,
|
1004 |
+
"id": "61bf5939",
|
1005 |
+
"metadata": {},
|
1006 |
+
"outputs": [],
|
1007 |
+
"source": [
|
1008 |
+
"pipeline_settings = {\"enable_cache\": False}\n",
|
1009 |
+
"\n",
|
1010 |
+
"# Lets add some metadata to the model to make it identifiable\n",
|
1011 |
+
"pipeline_settings[\"model_version\"] = ModelVersion(\n",
|
1012 |
+
" name=\"breast_cancer_classifier\",\n",
|
1013 |
+
" version=\"production\", # We can pass in the stage name here!\n",
|
1014 |
+
" license=\"Apache 2.0\",\n",
|
1015 |
+
" description=\"A breast cancer classifier\",\n",
|
1016 |
+
" tags=[\"breast_cancer\", \"classifier\"],\n",
|
1017 |
+
")"
|
1018 |
+
]
|
1019 |
+
},
|
1020 |
+
{
|
1021 |
+
"cell_type": "code",
|
1022 |
+
"execution_count": null,
|
1023 |
+
"id": "ff3402f1",
|
1024 |
+
"metadata": {},
|
1025 |
+
"outputs": [],
|
1026 |
+
"source": [
|
1027 |
+
"# the `with_options` method allows us to pass in pipeline settings\n",
|
1028 |
+
"# and returns a configured pipeline\n",
|
1029 |
+
"inference_configured = inference.with_options(**pipeline_settings)\n",
|
1030 |
+
"\n",
|
1031 |
+
"# Let's run it again to make sure we have two versions\n",
|
1032 |
+
"# We need to pass in the ID of the preprocessing done in the feature engineering pipeline\n",
|
1033 |
+
"# in order to avoid training-serving skew\n",
|
1034 |
+
"inference_configured(\n",
|
1035 |
+
" preprocess_pipeline_id=preprocessing_pipeline_artifact_version.id\n",
|
1036 |
+
")"
|
1037 |
+
]
|
1038 |
+
},
|
1039 |
+
{
|
1040 |
+
"cell_type": "markdown",
|
1041 |
+
"id": "2935d1fa",
|
1042 |
+
"metadata": {},
|
1043 |
+
"source": [
|
1044 |
+
"ZenML automatically links all artifacts to the `production` model version as well, including the predictions\n",
|
1045 |
+
"that were returned in the pipeline. This completes the MLOps loop of training to inference:"
|
1046 |
+
]
|
1047 |
+
},
|
1048 |
+
{
|
1049 |
+
"cell_type": "code",
|
1050 |
+
"execution_count": null,
|
1051 |
+
"id": "e191d019",
|
1052 |
+
"metadata": {},
|
1053 |
+
"outputs": [],
|
1054 |
+
"source": [
|
1055 |
+
"# Fetch production model\n",
|
1056 |
+
"production_model_version = client.get_model_version(\"breast_cancer_classifier\", \"production\")\n",
|
1057 |
+
"\n",
|
1058 |
+
"# Get the predictions artifact\n",
|
1059 |
+
"production_model_version.get_artifact(\"predictions\").load()"
|
1060 |
+
]
|
1061 |
+
},
|
1062 |
+
{
|
1063 |
+
"cell_type": "markdown",
|
1064 |
+
"id": "b0a73cdf",
|
1065 |
+
"metadata": {},
|
1066 |
+
"source": [
|
1067 |
+
"You can also see all predictions ever created as a complete history in the dashboard:\n",
|
1068 |
+
"\n",
|
1069 |
+
"<img src=\".assets/cloud_mcp_predictions.png\" width=\"70%\" alt=\"Model Control Plane\">"
|
1070 |
+
]
|
1071 |
+
},
|
1072 |
+
{
|
1073 |
+
"cell_type": "markdown",
|
1074 |
+
"id": "594ee4fc-f102-4b99-bdc3-2f1670c87679",
|
1075 |
+
"metadata": {},
|
1076 |
+
"source": [
|
1077 |
+
"## Congratulations!\n",
|
1078 |
+
"\n",
|
1079 |
+
"You're a legit MLOps engineer now! You trained two models, evaluated them against\n",
|
1080 |
+
"a test set, registered the best one with the ZenML model control plane,\n",
|
1081 |
+
"and served some predictions. You also learned how to iterate on your models and\n",
|
1082 |
+
"data by using some of the ZenML utility abstractions. You saw how to view your\n",
|
1083 |
+
"artifacts and models via the client as well as the ZenML Dashboard.\n",
|
1084 |
+
"\n",
|
1085 |
+
"## Further exploration\n",
|
1086 |
+
"\n",
|
1087 |
+
"This was just the tip of the iceberg of what ZenML can do; check out the [**docs**](https://docs.zenml.io/) to learn more\n",
|
1088 |
+
"about the capabilities of ZenML. For example, you might want to:\n",
|
1089 |
+
"\n",
|
1090 |
+
"- [Deploy ZenML](https://docs.zenml.io/user-guide/production-guide/connect-deployed-zenml) to collaborate with your colleagues.\n",
|
1091 |
+
"- Run the same pipeline on a [cloud MLOps stack in production](https://docs.zenml.io/user-guide/production-guide/cloud-stack).\n",
|
1092 |
+
"- Track your metrics in an experiment tracker like [MLflow](https://docs.zenml.io/stacks-and-components/component-guide/experiment-trackers/mlflow).\n",
|
1093 |
+
"\n",
|
1094 |
+
"## What next?\n",
|
1095 |
+
"\n",
|
1096 |
+
"* If you have questions or feedback... join our [**Slack Community**](https://zenml.io/slack) and become part of the ZenML family!\n",
|
1097 |
+
"* If you want to quickly get started with ZenML, check out the [ZenML Cloud](https://zenml.io/cloud)."
|
1098 |
+
]
|
1099 |
+
}
|
1100 |
+
],
|
1101 |
+
"metadata": {
|
1102 |
+
"kernelspec": {
|
1103 |
+
"display_name": "Python 3 (ipykernel)",
|
1104 |
+
"language": "python",
|
1105 |
+
"name": "python3"
|
1106 |
+
},
|
1107 |
+
"language_info": {
|
1108 |
+
"codemirror_mode": {
|
1109 |
+
"name": "ipython",
|
1110 |
+
"version": 3
|
1111 |
+
},
|
1112 |
+
"file_extension": ".py",
|
1113 |
+
"mimetype": "text/x-python",
|
1114 |
+
"name": "python",
|
1115 |
+
"nbconvert_exporter": "python",
|
1116 |
+
"pygments_lexer": "ipython3",
|
1117 |
+
"version": "3.8.10"
|
1118 |
+
}
|
1119 |
+
},
|
1120 |
+
"nbformat": 4,
|
1121 |
+
"nbformat_minor": 5
|
1122 |
+
}
|
requirements.txt
CHANGED
@@ -6,4 +6,5 @@ boto3<=1.26.76
|
|
6 |
aws-profile-manager
|
7 |
mlflow>=2.1.1,<=2.9.2
|
8 |
mlserver>=1.3.3
|
9 |
-
mlserver-mlflow>=1.3.3
|
|
|
|
6 |
aws-profile-manager
|
7 |
mlflow>=2.1.1,<=2.9.2
|
8 |
mlserver>=1.3.3
|
9 |
+
mlserver-mlflow>=1.3.3
|
10 |
+
sagemaker==2.117.0
|
run.py
CHANGED
@@ -68,6 +68,12 @@ Examples:
|
|
68 |
help="Version of the test dataset produced by feature engineering. "
|
69 |
"If not specified, a new version will be created.",
|
70 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
@click.option(
|
72 |
"--feature-pipeline",
|
73 |
is_flag=True,
|
@@ -97,6 +103,7 @@ def main(
|
|
97 |
train_dataset_version_name: Optional[str] = None,
|
98 |
test_dataset_name: str = "dataset_tst",
|
99 |
test_dataset_version_name: Optional[str] = None,
|
|
|
100 |
feature_pipeline: bool = False,
|
101 |
training_pipeline: bool = False,
|
102 |
inference_pipeline: bool = False,
|
@@ -129,8 +136,10 @@ def main(
|
|
129 |
# Execute Training Pipeline
|
130 |
if training_pipeline:
|
131 |
pipeline_args = {}
|
132 |
-
|
133 |
-
|
|
|
|
|
134 |
run_args_train = {}
|
135 |
|
136 |
# If train_dataset_version_name is specified, use versioned artifacts
|
@@ -157,7 +166,10 @@ def main(
|
|
157 |
|
158 |
if inference_pipeline:
|
159 |
pipeline_args = {}
|
160 |
-
|
|
|
|
|
|
|
161 |
run_args_inference = {}
|
162 |
inference.with_options(**pipeline_args)(**run_args_inference)
|
163 |
logger.info("Inference pipeline finished successfully!")
|
|
|
68 |
help="Version of the test dataset produced by feature engineering. "
|
69 |
"If not specified, a new version will be created.",
|
70 |
)
|
71 |
+
@click.option(
|
72 |
+
"--config",
|
73 |
+
default=None,
|
74 |
+
type=click.STRING,
|
75 |
+
help="The name of the config",
|
76 |
+
)
|
77 |
@click.option(
|
78 |
"--feature-pipeline",
|
79 |
is_flag=True,
|
|
|
103 |
train_dataset_version_name: Optional[str] = None,
|
104 |
test_dataset_name: str = "dataset_tst",
|
105 |
test_dataset_version_name: Optional[str] = None,
|
106 |
+
config: Optional[str] = None,
|
107 |
feature_pipeline: bool = False,
|
108 |
training_pipeline: bool = False,
|
109 |
inference_pipeline: bool = False,
|
|
|
136 |
# Execute Training Pipeline
|
137 |
if training_pipeline:
|
138 |
pipeline_args = {}
|
139 |
+
if config is None:
|
140 |
+
pipeline_args["config_path"] = os.path.join(config_folder, "training.yaml")
|
141 |
+
else:
|
142 |
+
pipeline_args["config_path"] = os.path.join(config_folder, config)
|
143 |
run_args_train = {}
|
144 |
|
145 |
# If train_dataset_version_name is specified, use versioned artifacts
|
|
|
166 |
|
167 |
if inference_pipeline:
|
168 |
pipeline_args = {}
|
169 |
+
if config is None:
|
170 |
+
pipeline_args["config_path"] = os.path.join(config_folder, "inference.yaml")
|
171 |
+
else:
|
172 |
+
pipeline_args["config_path"] = os.path.join(config_folder, config)
|
173 |
run_args_inference = {}
|
174 |
inference.with_options(**pipeline_args)(**run_args_inference)
|
175 |
logger.info("Inference pipeline finished successfully!")
|
run_deploy.ipynb
CHANGED
@@ -11,516 +11,11 @@
|
|
11 |
"\n",
|
12 |
"This repository is a minimalistic MLOps project intended as a starting point to learn how to put ML workflows in production. It features: \n",
|
13 |
"\n",
|
14 |
-
"- A feature engineering pipeline that loads data and prepares it for training.\n",
|
15 |
-
"- A training pipeline that loads the preprocessed dataset and trains a model.\n",
|
16 |
-
"- A batch inference pipeline that runs predictions on the trained model with new data.\n",
|
17 |
-
"\n",
|
18 |
"Follow along this notebook to understand how you can use ZenML to productionalize your ML workflows!\n",
|
19 |
"\n",
|
20 |
"<img src=\"_assets/pipeline_overview.png\" width=\"50%\" alt=\"Pipelines Overview\">"
|
21 |
]
|
22 |
},
|
23 |
-
{
|
24 |
-
"cell_type": "markdown",
|
25 |
-
"id": "8f466b16",
|
26 |
-
"metadata": {},
|
27 |
-
"source": [
|
28 |
-
"## Run on Colab\n",
|
29 |
-
"\n",
|
30 |
-
"You can use Google Colab to see ZenML in action, no signup / installation\n",
|
31 |
-
"required!\n",
|
32 |
-
"\n",
|
33 |
-
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](\n",
|
34 |
-
"https://colab.research.google.com/github/zenml-io/zenml/blob/main/examples/quickstart/quickstart.ipynb)"
|
35 |
-
]
|
36 |
-
},
|
37 |
-
{
|
38 |
-
"cell_type": "markdown",
|
39 |
-
"id": "66b2977c",
|
40 |
-
"metadata": {},
|
41 |
-
"source": [
|
42 |
-
"# πΆ Step 0. Install Requirements\n",
|
43 |
-
"\n",
|
44 |
-
"Let's install ZenML to get started. First we'll install the latest version of\n",
|
45 |
-
"ZenML as well as the `sklearn` integration of ZenML:"
|
46 |
-
]
|
47 |
-
},
|
48 |
-
{
|
49 |
-
"cell_type": "code",
|
50 |
-
"execution_count": null,
|
51 |
-
"id": "ce2f40eb",
|
52 |
-
"metadata": {},
|
53 |
-
"outputs": [],
|
54 |
-
"source": [
|
55 |
-
"!pip install \"zenml[server]\""
|
56 |
-
]
|
57 |
-
},
|
58 |
-
{
|
59 |
-
"cell_type": "code",
|
60 |
-
"execution_count": null,
|
61 |
-
"id": "5aad397e",
|
62 |
-
"metadata": {},
|
63 |
-
"outputs": [],
|
64 |
-
"source": [
|
65 |
-
"from zenml.environment import Environment\n",
|
66 |
-
"\n",
|
67 |
-
"if Environment.in_google_colab():\n",
|
68 |
-
" # Install Cloudflare Tunnel binary\n",
|
69 |
-
" !wget -q https://github.com/cloudflare/cloudflared/releases/latest/download/cloudflared-linux-amd64.deb && dpkg -i cloudflared-linux-amd64.deb\n",
|
70 |
-
"\n",
|
71 |
-
" # Pull required modules from this example\n",
|
72 |
-
" !git clone -b main https://github.com/zenml-io/zenml\n",
|
73 |
-
" !cp -r zenml/examples/quickstart/* .\n",
|
74 |
-
" !rm -rf zenml\n"
|
75 |
-
]
|
76 |
-
},
|
77 |
-
{
|
78 |
-
"cell_type": "code",
|
79 |
-
"execution_count": null,
|
80 |
-
"id": "f76f562e",
|
81 |
-
"metadata": {},
|
82 |
-
"outputs": [],
|
83 |
-
"source": [
|
84 |
-
"!zenml integration install sklearn -y\n",
|
85 |
-
"\n",
|
86 |
-
"import IPython\n",
|
87 |
-
"IPython.Application.instance().kernel.do_shutdown(restart=True)"
|
88 |
-
]
|
89 |
-
},
|
90 |
-
{
|
91 |
-
"cell_type": "markdown",
|
92 |
-
"id": "3b044374",
|
93 |
-
"metadata": {},
|
94 |
-
"source": [
|
95 |
-
"Please wait for the installation to complete before running subsequent cells. At\n",
|
96 |
-
"the end of the installation, the notebook kernel will automatically restart."
|
97 |
-
]
|
98 |
-
},
|
99 |
-
{
|
100 |
-
"cell_type": "markdown",
|
101 |
-
"id": "e3955ff1",
|
102 |
-
"metadata": {},
|
103 |
-
"source": [
|
104 |
-
"Optional: If you are using [ZenML Cloud](https://zenml.io/cloud), execute the following cell with your tenant URL. Otherwise ignore."
|
105 |
-
]
|
106 |
-
},
|
107 |
-
{
|
108 |
-
"cell_type": "code",
|
109 |
-
"execution_count": null,
|
110 |
-
"id": "e2587315",
|
111 |
-
"metadata": {},
|
112 |
-
"outputs": [],
|
113 |
-
"source": [
|
114 |
-
"zenml_server_url = \"PLEASE_UPDATE_ME\" # in the form \"https://URL_TO_SERVER\"\n",
|
115 |
-
"\n",
|
116 |
-
"!zenml connect --url $zenml_server_url"
|
117 |
-
]
|
118 |
-
},
|
119 |
-
{
|
120 |
-
"cell_type": "code",
|
121 |
-
"execution_count": null,
|
122 |
-
"id": "081d5616",
|
123 |
-
"metadata": {},
|
124 |
-
"outputs": [],
|
125 |
-
"source": [
|
126 |
-
"# Initialize ZenML and set the default stack\n",
|
127 |
-
"!zenml init\n",
|
128 |
-
"\n",
|
129 |
-
"!zenml stack set default"
|
130 |
-
]
|
131 |
-
},
|
132 |
-
{
|
133 |
-
"cell_type": "code",
|
134 |
-
"execution_count": null,
|
135 |
-
"id": "79f775f2",
|
136 |
-
"metadata": {},
|
137 |
-
"outputs": [],
|
138 |
-
"source": [
|
139 |
-
"# Do the imports at the top\n",
|
140 |
-
"from typing_extensions import Annotated\n",
|
141 |
-
"from sklearn.datasets import load_breast_cancer\n",
|
142 |
-
"\n",
|
143 |
-
"import random\n",
|
144 |
-
"import pandas as pd\n",
|
145 |
-
"from zenml import step, ExternalArtifact, pipeline, ModelVersion, get_step_context\n",
|
146 |
-
"from zenml.client import Client\n",
|
147 |
-
"from zenml.logger import get_logger\n",
|
148 |
-
"from uuid import UUID\n",
|
149 |
-
"\n",
|
150 |
-
"from typing import Optional, List\n",
|
151 |
-
"\n",
|
152 |
-
"from zenml import pipeline\n",
|
153 |
-
"\n",
|
154 |
-
"from steps import (\n",
|
155 |
-
" data_loader,\n",
|
156 |
-
" data_preprocessor,\n",
|
157 |
-
" data_splitter,\n",
|
158 |
-
" model_evaluator,\n",
|
159 |
-
" inference_preprocessor\n",
|
160 |
-
")\n",
|
161 |
-
"\n",
|
162 |
-
"from zenml.logger import get_logger\n",
|
163 |
-
"\n",
|
164 |
-
"logger = get_logger(__name__)\n",
|
165 |
-
"\n",
|
166 |
-
"# Initialize the ZenML client to fetch objects from the ZenML Server\n",
|
167 |
-
"client = Client()"
|
168 |
-
]
|
169 |
-
},
|
170 |
-
{
|
171 |
-
"cell_type": "markdown",
|
172 |
-
"id": "35e48460",
|
173 |
-
"metadata": {},
|
174 |
-
"source": [
|
175 |
-
"## π₯ Step 1: Load your data and execute feature engineering\n",
|
176 |
-
"\n",
|
177 |
-
"We'll start off by importing our data. In this quickstart we'll be working with\n",
|
178 |
-
"[the Breast Cancer](https://archive.ics.uci.edu/dataset/17/breast+cancer+wisconsin+diagnostic) dataset\n",
|
179 |
-
"which is publicly available on the UCI Machine Learning Repository. The task is a classification\n",
|
180 |
-
"problem, to predict whether a patient is diagnosed with breast cancer or not.\n",
|
181 |
-
"\n",
|
182 |
-
"When you're getting started with a machine learning problem you'll want to do\n",
|
183 |
-
"something similar to this: import your data and get it in the right shape for\n",
|
184 |
-
"your training. ZenML mostly gets out of your way when you're writing your Python\n",
|
185 |
-
"code, as you'll see from the following cell.\n",
|
186 |
-
"\n",
|
187 |
-
"<img src=\".assets/feature_engineering_pipeline.png\" width=\"50%\" alt=\"Feature engineering pipeline\" />"
|
188 |
-
]
|
189 |
-
},
|
190 |
-
{
|
191 |
-
"cell_type": "code",
|
192 |
-
"execution_count": null,
|
193 |
-
"id": "3cd974d1",
|
194 |
-
"metadata": {},
|
195 |
-
"outputs": [],
|
196 |
-
"source": [
|
197 |
-
"@step\n",
|
198 |
-
"def data_loader_simplified(\n",
|
199 |
-
" random_state: int, is_inference: bool = False, target: str = \"target\"\n",
|
200 |
-
") -> Annotated[pd.DataFrame, \"dataset\"]: # We name the dataset \n",
|
201 |
-
" \"\"\"Dataset reader step.\"\"\"\n",
|
202 |
-
" dataset = load_breast_cancer(as_frame=True)\n",
|
203 |
-
" inference_size = int(len(dataset.target) * 0.05)\n",
|
204 |
-
" dataset: pd.DataFrame = dataset.frame\n",
|
205 |
-
" inference_subset = dataset.sample(inference_size, random_state=random_state)\n",
|
206 |
-
" if is_inference:\n",
|
207 |
-
" dataset = inference_subset\n",
|
208 |
-
" dataset.drop(columns=target, inplace=True)\n",
|
209 |
-
" else:\n",
|
210 |
-
" dataset.drop(inference_subset.index, inplace=True)\n",
|
211 |
-
" dataset.reset_index(drop=True, inplace=True)\n",
|
212 |
-
" logger.info(f\"Dataset with {len(dataset)} records loaded!\")\n",
|
213 |
-
" return dataset\n"
|
214 |
-
]
|
215 |
-
},
|
216 |
-
{
|
217 |
-
"cell_type": "markdown",
|
218 |
-
"id": "1e8ba4c6",
|
219 |
-
"metadata": {},
|
220 |
-
"source": [
|
221 |
-
"The whole function is decorated with the `@step` decorator, which\n",
|
222 |
-
"tells ZenML to track this function as a step in the pipeline. This means that\n",
|
223 |
-
"ZenML will automatically version, track, and cache the data that is produced by\n",
|
224 |
-
"this function as an `artifact`. This is a very powerful feature, as it means that you can\n",
|
225 |
-
"reproduce your data at any point in the future, even if the original data source\n",
|
226 |
-
"changes or disappears. \n",
|
227 |
-
"\n",
|
228 |
-
"Note the use of the `typing` module's `Annotated` type hint in the output of the\n",
|
229 |
-
"step. We're using this to give a name to the output of the step, which will make\n",
|
230 |
-
"it possible to access it via a keyword later on.\n",
|
231 |
-
"\n",
|
232 |
-
"You'll also notice that we have included type hints for the outputs\n",
|
233 |
-
"to the function. These are not only useful for anyone reading your code, but\n",
|
234 |
-
"help ZenML process your data in a way appropriate to the specific data types."
|
235 |
-
]
|
236 |
-
},
|
237 |
-
{
|
238 |
-
"cell_type": "markdown",
|
239 |
-
"id": "b6286b67",
|
240 |
-
"metadata": {},
|
241 |
-
"source": [
|
242 |
-
"ZenML is built in a way that allows you to experiment with your data and build\n",
|
243 |
-
"your pipelines as you work, so if you want to call this function to see how it\n",
|
244 |
-
"works, you can just call it directly. Here we take a look at the first few rows\n",
|
245 |
-
"of your training dataset."
|
246 |
-
]
|
247 |
-
},
|
248 |
-
{
|
249 |
-
"cell_type": "code",
|
250 |
-
"execution_count": null,
|
251 |
-
"id": "d838e2ea",
|
252 |
-
"metadata": {},
|
253 |
-
"outputs": [],
|
254 |
-
"source": [
|
255 |
-
"df = data_loader_simplified(random_state=42)\n",
|
256 |
-
"df.head()"
|
257 |
-
]
|
258 |
-
},
|
259 |
-
{
|
260 |
-
"cell_type": "markdown",
|
261 |
-
"id": "28c05291",
|
262 |
-
"metadata": {},
|
263 |
-
"source": [
|
264 |
-
"Everything looks as we'd expect and the values are all in the right format π₯³.\n",
|
265 |
-
"\n",
|
266 |
-
"We're now at the point where can bring this step (and some others) together into a single\n",
|
267 |
-
"pipeline, the top-level organising entity for code in ZenML. Creating such a pipeline is\n",
|
268 |
-
"as simple as adding a `@pipeline` decorator to a function. This specific\n",
|
269 |
-
"pipeline doesn't return a value, but that option is available to you if you need."
|
270 |
-
]
|
271 |
-
},
|
272 |
-
{
|
273 |
-
"cell_type": "code",
|
274 |
-
"execution_count": null,
|
275 |
-
"id": "b50a9537",
|
276 |
-
"metadata": {},
|
277 |
-
"outputs": [],
|
278 |
-
"source": [
|
279 |
-
"@pipeline\n",
|
280 |
-
"def feature_engineering(\n",
|
281 |
-
" test_size: float = 0.3,\n",
|
282 |
-
" drop_na: Optional[bool] = None,\n",
|
283 |
-
" normalize: Optional[bool] = None,\n",
|
284 |
-
" drop_columns: Optional[List[str]] = None,\n",
|
285 |
-
" target: Optional[str] = \"target\",\n",
|
286 |
-
" random_state: int = 17\n",
|
287 |
-
"):\n",
|
288 |
-
" \"\"\"Feature engineering pipeline.\"\"\"\n",
|
289 |
-
" # Link all the steps together by calling them and passing the output\n",
|
290 |
-
" # of one step as the input of the next step.\n",
|
291 |
-
" raw_data = data_loader(random_state=random_state, target=target)\n",
|
292 |
-
" dataset_trn, dataset_tst = data_splitter(\n",
|
293 |
-
" dataset=raw_data,\n",
|
294 |
-
" test_size=test_size,\n",
|
295 |
-
" )\n",
|
296 |
-
" dataset_trn, dataset_tst, _ = data_preprocessor(\n",
|
297 |
-
" dataset_trn=dataset_trn,\n",
|
298 |
-
" dataset_tst=dataset_tst,\n",
|
299 |
-
" drop_na=drop_na,\n",
|
300 |
-
" normalize=normalize,\n",
|
301 |
-
" drop_columns=drop_columns,\n",
|
302 |
-
" target=target,\n",
|
303 |
-
" random_state=random_state,\n",
|
304 |
-
" )"
|
305 |
-
]
|
306 |
-
},
|
307 |
-
{
|
308 |
-
"cell_type": "markdown",
|
309 |
-
"id": "7cd73c23",
|
310 |
-
"metadata": {},
|
311 |
-
"source": [
|
312 |
-
"We're ready to run the pipeline now, which we can do just as with the step - by calling the\n",
|
313 |
-
"pipeline function itself:"
|
314 |
-
]
|
315 |
-
},
|
316 |
-
{
|
317 |
-
"cell_type": "code",
|
318 |
-
"execution_count": null,
|
319 |
-
"id": "1e0aa9af",
|
320 |
-
"metadata": {},
|
321 |
-
"outputs": [],
|
322 |
-
"source": [
|
323 |
-
"feature_engineering()"
|
324 |
-
]
|
325 |
-
},
|
326 |
-
{
|
327 |
-
"cell_type": "markdown",
|
328 |
-
"id": "1785c303",
|
329 |
-
"metadata": {},
|
330 |
-
"source": [
|
331 |
-
"Let's run this again with a slightly different test size, to create more datasets:"
|
332 |
-
]
|
333 |
-
},
|
334 |
-
{
|
335 |
-
"cell_type": "code",
|
336 |
-
"execution_count": null,
|
337 |
-
"id": "658c0570-2607-4b97-a72d-d45c92633e48",
|
338 |
-
"metadata": {},
|
339 |
-
"outputs": [],
|
340 |
-
"source": [
|
341 |
-
"feature_engineering(test_size=0.25)"
|
342 |
-
]
|
343 |
-
},
|
344 |
-
{
|
345 |
-
"cell_type": "markdown",
|
346 |
-
"id": "64bb7206",
|
347 |
-
"metadata": {},
|
348 |
-
"source": [
|
349 |
-
"Notice the second time around, the data loader step was **cached**, while the rest of the pipeline was rerun. \n",
|
350 |
-
"This is because ZenML automatically determined that nothing had changed in the data loader step, \n",
|
351 |
-
"so it didn't need to rerun it."
|
352 |
-
]
|
353 |
-
},
|
354 |
-
{
|
355 |
-
"cell_type": "markdown",
|
356 |
-
"id": "5bc6849d-31ac-4c08-9ca2-cf7f5f35ccbf",
|
357 |
-
"metadata": {},
|
358 |
-
"source": [
|
359 |
-
"Let's run this again with a slightly different test size and random state, to disable the cache and to create more datasets:"
|
360 |
-
]
|
361 |
-
},
|
362 |
-
{
|
363 |
-
"cell_type": "code",
|
364 |
-
"execution_count": null,
|
365 |
-
"id": "1e1d8546",
|
366 |
-
"metadata": {},
|
367 |
-
"outputs": [],
|
368 |
-
"source": [
|
369 |
-
"feature_engineering(test_size=0.25, random_state=104)"
|
370 |
-
]
|
371 |
-
},
|
372 |
-
{
|
373 |
-
"cell_type": "markdown",
|
374 |
-
"id": "6c42078a",
|
375 |
-
"metadata": {},
|
376 |
-
"source": [
|
377 |
-
"At this point you might be interested to view your pipeline runs in the ZenML\n",
|
378 |
-
"Dashboard. In case you are not using a hosted instance of ZenML, you can spin this up by executing the next cell. This will start a\n",
|
379 |
-
"server which you can access by clicking on the link that appears in the output\n",
|
380 |
-
"of the cell.\n",
|
381 |
-
"\n",
|
382 |
-
"Log into the Dashboard using default credentials (username 'default' and\n",
|
383 |
-
"password left blank). From there you can inspect the pipeline or the specific\n",
|
384 |
-
"pipeline run.\n"
|
385 |
-
]
|
386 |
-
},
|
387 |
-
{
|
388 |
-
"cell_type": "code",
|
389 |
-
"execution_count": null,
|
390 |
-
"id": "8cd3cc8c",
|
391 |
-
"metadata": {},
|
392 |
-
"outputs": [],
|
393 |
-
"source": [
|
394 |
-
"from zenml.environment import Environment\n",
|
395 |
-
"from zenml.zen_stores.rest_zen_store import RestZenStore\n",
|
396 |
-
"\n",
|
397 |
-
"\n",
|
398 |
-
"if not isinstance(client.zen_store, RestZenStore):\n",
|
399 |
-
" # Only spin up a local Dashboard in case you aren't already connected to a remote server\n",
|
400 |
-
" if Environment.in_google_colab():\n",
|
401 |
-
" # run ZenML through a cloudflare tunnel to get a public endpoint\n",
|
402 |
-
" !zenml up --port 8237 & cloudflared tunnel --url http://localhost:8237\n",
|
403 |
-
" else:\n",
|
404 |
-
" !zenml up"
|
405 |
-
]
|
406 |
-
},
|
407 |
-
{
|
408 |
-
"cell_type": "markdown",
|
409 |
-
"id": "e8471f93",
|
410 |
-
"metadata": {},
|
411 |
-
"source": [
|
412 |
-
"We can also fetch the pipeline from the server and view the results directly in the notebook:"
|
413 |
-
]
|
414 |
-
},
|
415 |
-
{
|
416 |
-
"cell_type": "code",
|
417 |
-
"execution_count": null,
|
418 |
-
"id": "f208b200",
|
419 |
-
"metadata": {},
|
420 |
-
"outputs": [],
|
421 |
-
"source": [
|
422 |
-
"client = Client()\n",
|
423 |
-
"run = client.get_pipeline(\"feature_engineering\").last_run\n",
|
424 |
-
"print(run.name)"
|
425 |
-
]
|
426 |
-
},
|
427 |
-
{
|
428 |
-
"cell_type": "markdown",
|
429 |
-
"id": "a037f09d",
|
430 |
-
"metadata": {},
|
431 |
-
"source": [
|
432 |
-
"We can also see the data artifacts that were produced by the last step of the pipeline:"
|
433 |
-
]
|
434 |
-
},
|
435 |
-
{
|
436 |
-
"cell_type": "code",
|
437 |
-
"execution_count": null,
|
438 |
-
"id": "34283e89",
|
439 |
-
"metadata": {},
|
440 |
-
"outputs": [],
|
441 |
-
"source": [
|
442 |
-
"run.steps[\"data_preprocessor\"].outputs"
|
443 |
-
]
|
444 |
-
},
|
445 |
-
{
|
446 |
-
"cell_type": "code",
|
447 |
-
"execution_count": null,
|
448 |
-
"id": "bceb0312",
|
449 |
-
"metadata": {},
|
450 |
-
"outputs": [],
|
451 |
-
"source": [
|
452 |
-
"# Read one of the datasets. This is the one with a 0.25 test split\n",
|
453 |
-
"run.steps[\"data_preprocessor\"].outputs[\"dataset_trn\"].load()"
|
454 |
-
]
|
455 |
-
},
|
456 |
-
{
|
457 |
-
"cell_type": "markdown",
|
458 |
-
"id": "26d26436",
|
459 |
-
"metadata": {},
|
460 |
-
"source": [
|
461 |
-
"We can also get the artifacts directly. Each time you create a new pipeline run, a new `artifact version` is created.\n",
|
462 |
-
"\n",
|
463 |
-
"You can fetch these artifact and their versions using the `client`: "
|
464 |
-
]
|
465 |
-
},
|
466 |
-
{
|
467 |
-
"cell_type": "code",
|
468 |
-
"execution_count": null,
|
469 |
-
"id": "c8f90647",
|
470 |
-
"metadata": {},
|
471 |
-
"outputs": [],
|
472 |
-
"source": [
|
473 |
-
"# Get artifact version from our run\n",
|
474 |
-
"dataset_trn_artifact_version_via_run = run.steps[\"data_preprocessor\"].outputs[\"dataset_trn\"] \n",
|
475 |
-
"\n",
|
476 |
-
"# Get latest version from client directly\n",
|
477 |
-
"dataset_trn_artifact_version = client.get_artifact_version(\"dataset_trn\")\n",
|
478 |
-
"\n",
|
479 |
-
"# This should be true if our run is the latest run and no artifact has been produced\n",
|
480 |
-
"# in the intervening time\n",
|
481 |
-
"dataset_trn_artifact_version_via_run.id == dataset_trn_artifact_version.id"
|
482 |
-
]
|
483 |
-
},
|
484 |
-
{
|
485 |
-
"cell_type": "code",
|
486 |
-
"execution_count": null,
|
487 |
-
"id": "3f9d3dfd",
|
488 |
-
"metadata": {},
|
489 |
-
"outputs": [],
|
490 |
-
"source": [
|
491 |
-
"# Fetch the rest of the artifacts\n",
|
492 |
-
"dataset_tst_artifact_version = client.get_artifact_version(\"dataset_tst\")\n",
|
493 |
-
"preprocessing_pipeline_artifact_version = client.get_artifact_version(\"preprocess_pipeline\")"
|
494 |
-
]
|
495 |
-
},
|
496 |
-
{
|
497 |
-
"cell_type": "markdown",
|
498 |
-
"id": "7a7d1b04",
|
499 |
-
"metadata": {},
|
500 |
-
"source": [
|
501 |
-
"If you started with a fresh install, then you would have two versions corresponding\n",
|
502 |
-
"to the two pipelines that we ran above. We can even load a artifact version in memory: "
|
503 |
-
]
|
504 |
-
},
|
505 |
-
{
|
506 |
-
"cell_type": "code",
|
507 |
-
"execution_count": null,
|
508 |
-
"id": "c82aca75",
|
509 |
-
"metadata": {},
|
510 |
-
"outputs": [],
|
511 |
-
"source": [
|
512 |
-
"# Load an artifact to verify you can fetch it\n",
|
513 |
-
"dataset_trn_artifact_version.load()"
|
514 |
-
]
|
515 |
-
},
|
516 |
-
{
|
517 |
-
"cell_type": "markdown",
|
518 |
-
"id": "5963509e",
|
519 |
-
"metadata": {},
|
520 |
-
"source": [
|
521 |
-
"We'll use these artifacts from above in our next pipeline"
|
522 |
-
]
|
523 |
-
},
|
524 |
{
|
525 |
"cell_type": "markdown",
|
526 |
"id": "8c28b474",
|
@@ -534,16 +29,9 @@
|
|
534 |
"id": "87909827",
|
535 |
"metadata": {},
|
536 |
"source": [
|
537 |
-
"
|
538 |
-
"how difficult the task is. The Breast Cancer dataset is sufficiently large and complex \n",
|
539 |
-
"that it's unlikely we'll be able to train a model that behaves perfectly since the problem \n",
|
540 |
-
"is inherently complex, but we can get a sense of what a reasonable baseline looks like.\n",
|
541 |
"\n",
|
542 |
-
"
|
543 |
-
"Classifier, both batteries-included from `sklearn`. We'll train them both on the\n",
|
544 |
-
"same data and then compare their performance.\n",
|
545 |
-
"\n",
|
546 |
-
"<img src=\".assets/training_pipeline.png\" width=\"50%\" alt=\"Training pipeline\">"
|
547 |
]
|
548 |
},
|
549 |
{
|
@@ -553,360 +41,7 @@
|
|
553 |
"metadata": {},
|
554 |
"outputs": [],
|
555 |
"source": [
|
556 |
-
"
|
557 |
-
"from sklearn.base import ClassifierMixin\n",
|
558 |
-
"from sklearn.ensemble import RandomForestClassifier\n",
|
559 |
-
"from sklearn.linear_model import SGDClassifier\n",
|
560 |
-
"from typing_extensions import Annotated\n",
|
561 |
-
"from zenml import ArtifactConfig, step\n",
|
562 |
-
"from zenml.logger import get_logger\n",
|
563 |
-
"\n",
|
564 |
-
"logger = get_logger(__name__)\n",
|
565 |
-
"\n",
|
566 |
-
"\n",
|
567 |
-
"@step\n",
|
568 |
-
"def model_trainer(\n",
|
569 |
-
" dataset_trn: pd.DataFrame,\n",
|
570 |
-
" model_type: str = \"sgd\",\n",
|
571 |
-
") -> Annotated[ClassifierMixin, ArtifactConfig(name=\"sklearn_classifier\", is_model_artifact=True)]:\n",
|
572 |
-
" \"\"\"Configure and train a model on the training dataset.\"\"\"\n",
|
573 |
-
" target = \"target\"\n",
|
574 |
-
" if model_type == \"sgd\":\n",
|
575 |
-
" model = SGDClassifier()\n",
|
576 |
-
" elif model_type == \"rf\":\n",
|
577 |
-
" model = RandomForestClassifier()\n",
|
578 |
-
" else:\n",
|
579 |
-
" raise ValueError(f\"Unknown model type {model_type}\") \n",
|
580 |
-
"\n",
|
581 |
-
" logger.info(f\"Training model {model}...\")\n",
|
582 |
-
"\n",
|
583 |
-
" model.fit(\n",
|
584 |
-
" dataset_trn.drop(columns=[target]),\n",
|
585 |
-
" dataset_trn[target],\n",
|
586 |
-
" )\n",
|
587 |
-
" return model\n"
|
588 |
-
]
|
589 |
-
},
|
590 |
-
{
|
591 |
-
"cell_type": "markdown",
|
592 |
-
"id": "73a00008",
|
593 |
-
"metadata": {},
|
594 |
-
"source": [
|
595 |
-
"Our two training steps both return different kinds of `sklearn` classifier\n",
|
596 |
-
"models, so we use the generic `ClassifierMixin` type hint for the return type."
|
597 |
-
]
|
598 |
-
},
|
599 |
-
{
|
600 |
-
"cell_type": "markdown",
|
601 |
-
"id": "a5f22174",
|
602 |
-
"metadata": {},
|
603 |
-
"source": [
|
604 |
-
"ZenML allows you to load any version of any dataset that is tracked by the framework\n",
|
605 |
-
"directly into a pipeline using the `ExternalArtifact` interface. This is very convenient\n",
|
606 |
-
"in this case, as we'd like to send our preprocessed dataset from the older pipeline directly\n",
|
607 |
-
"into the training pipeline."
|
608 |
-
]
|
609 |
-
},
|
610 |
-
{
|
611 |
-
"cell_type": "code",
|
612 |
-
"execution_count": null,
|
613 |
-
"id": "1aa98f2f",
|
614 |
-
"metadata": {},
|
615 |
-
"outputs": [],
|
616 |
-
"source": [
|
617 |
-
"@pipeline\n",
|
618 |
-
"def training(\n",
|
619 |
-
" train_dataset_id: Optional[UUID] = None,\n",
|
620 |
-
" test_dataset_id: Optional[UUID] = None,\n",
|
621 |
-
" model_type: str = \"sgd\",\n",
|
622 |
-
" min_train_accuracy: float = 0.0,\n",
|
623 |
-
" min_test_accuracy: float = 0.0,\n",
|
624 |
-
"):\n",
|
625 |
-
" \"\"\"Model training pipeline.\"\"\" \n",
|
626 |
-
" if train_dataset_id is None or test_dataset_id is None:\n",
|
627 |
-
" # If we dont pass the IDs, this will run the feature engineering pipeline \n",
|
628 |
-
" dataset_trn, dataset_tst = feature_engineering()\n",
|
629 |
-
" else:\n",
|
630 |
-
" # Load the datasets from an older pipeline\n",
|
631 |
-
" dataset_trn = ExternalArtifact(id=train_dataset_id)\n",
|
632 |
-
" dataset_tst = ExternalArtifact(id=test_dataset_id) \n",
|
633 |
-
"\n",
|
634 |
-
" trained_model = model_trainer(\n",
|
635 |
-
" dataset_trn=dataset_trn,\n",
|
636 |
-
" model_type=model_type,\n",
|
637 |
-
" )\n",
|
638 |
-
"\n",
|
639 |
-
" model_evaluator(\n",
|
640 |
-
" model=trained_model,\n",
|
641 |
-
" dataset_trn=dataset_trn,\n",
|
642 |
-
" dataset_tst=dataset_tst,\n",
|
643 |
-
" min_train_accuracy=min_train_accuracy,\n",
|
644 |
-
" min_test_accuracy=min_test_accuracy,\n",
|
645 |
-
" )"
|
646 |
-
]
|
647 |
-
},
|
648 |
-
{
|
649 |
-
"cell_type": "markdown",
|
650 |
-
"id": "88b70fd3",
|
651 |
-
"metadata": {},
|
652 |
-
"source": [
|
653 |
-
"The end goal of this quick baseline evaluation is to understand which of the two\n",
|
654 |
-
"models performs better. We'll use the `evaluator` step to compare the two\n",
|
655 |
-
"models. This step takes in the model from the trainer step, and computes its score\n",
|
656 |
-
"over the testing set."
|
657 |
-
]
|
658 |
-
},
|
659 |
-
{
|
660 |
-
"cell_type": "code",
|
661 |
-
"execution_count": null,
|
662 |
-
"id": "c64885ac",
|
663 |
-
"metadata": {},
|
664 |
-
"outputs": [],
|
665 |
-
"source": [
|
666 |
-
"# Use a random forest model with the chosen datasets.\n",
|
667 |
-
"# We need to pass the ID's of the datasets into the function\n",
|
668 |
-
"training(\n",
|
669 |
-
" model_type=\"rf\",\n",
|
670 |
-
" train_dataset_id=dataset_trn_artifact_version.id,\n",
|
671 |
-
" test_dataset_id=dataset_tst_artifact_version.id\n",
|
672 |
-
")\n",
|
673 |
-
"\n",
|
674 |
-
"rf_run = client.get_pipeline(\"training\").last_run"
|
675 |
-
]
|
676 |
-
},
|
677 |
-
{
|
678 |
-
"cell_type": "code",
|
679 |
-
"execution_count": null,
|
680 |
-
"id": "4300c82f",
|
681 |
-
"metadata": {},
|
682 |
-
"outputs": [],
|
683 |
-
"source": [
|
684 |
-
"# Use a SGD classifier\n",
|
685 |
-
"sgd_run = training(\n",
|
686 |
-
" model_type=\"sgd\",\n",
|
687 |
-
" train_dataset_id=dataset_trn_artifact_version.id,\n",
|
688 |
-
" test_dataset_id=dataset_tst_artifact_version.id\n",
|
689 |
-
")\n",
|
690 |
-
"\n",
|
691 |
-
"sgd_run = client.get_pipeline(\"training\").last_run"
|
692 |
-
]
|
693 |
-
},
|
694 |
-
{
|
695 |
-
"cell_type": "markdown",
|
696 |
-
"id": "43f1a68a",
|
697 |
-
"metadata": {},
|
698 |
-
"source": [
|
699 |
-
"You can see from the logs already how our model training went: the\n",
|
700 |
-
"`RandomForestClassifier` performed considerably better than the `SGDClassifier`.\n",
|
701 |
-
"We can use the ZenML `Client` to verify this:"
|
702 |
-
]
|
703 |
-
},
|
704 |
-
{
|
705 |
-
"cell_type": "code",
|
706 |
-
"execution_count": null,
|
707 |
-
"id": "d95810b1",
|
708 |
-
"metadata": {},
|
709 |
-
"outputs": [],
|
710 |
-
"source": [
|
711 |
-
"# The evaluator returns a float value with the accuracy\n",
|
712 |
-
"rf_run.steps[\"model_evaluator\"].output.load() > sgd_run.steps[\"model_evaluator\"].output.load()"
|
713 |
-
]
|
714 |
-
},
|
715 |
-
{
|
716 |
-
"cell_type": "markdown",
|
717 |
-
"id": "e256d145",
|
718 |
-
"metadata": {},
|
719 |
-
"source": [
|
720 |
-
"# π― Step 3: Associating a model with your pipeline"
|
721 |
-
]
|
722 |
-
},
|
723 |
-
{
|
724 |
-
"cell_type": "markdown",
|
725 |
-
"id": "927978f3",
|
726 |
-
"metadata": {},
|
727 |
-
"source": [
|
728 |
-
"You can see it is relatively easy to train ML models using ZenML pipelines. But it can be somewhat clunky to track\n",
|
729 |
-
"all the models produced as you develop your experiments and use-cases. Luckily, ZenML offers a *Model Control Plane*,\n",
|
730 |
-
"which is a central register of all your ML models.\n",
|
731 |
-
"\n",
|
732 |
-
"You can easily create a ZenML `Model` and associate it with your pipelines using the `ModelVersion` object:"
|
733 |
-
]
|
734 |
-
},
|
735 |
-
{
|
736 |
-
"cell_type": "code",
|
737 |
-
"execution_count": null,
|
738 |
-
"id": "99ca00c0",
|
739 |
-
"metadata": {},
|
740 |
-
"outputs": [],
|
741 |
-
"source": [
|
742 |
-
"pipeline_settings = {}\n",
|
743 |
-
"\n",
|
744 |
-
"# Lets add some metadata to the model to make it identifiable\n",
|
745 |
-
"pipeline_settings[\"model_version\"] = ModelVersion(\n",
|
746 |
-
" name=\"breast_cancer_classifier\",\n",
|
747 |
-
" license=\"Apache 2.0\",\n",
|
748 |
-
" description=\"A breast cancer classifier\",\n",
|
749 |
-
" tags=[\"breast_cancer\", \"classifier\"],\n",
|
750 |
-
")"
|
751 |
-
]
|
752 |
-
},
|
753 |
-
{
|
754 |
-
"cell_type": "code",
|
755 |
-
"execution_count": null,
|
756 |
-
"id": "0e78a520",
|
757 |
-
"metadata": {},
|
758 |
-
"outputs": [],
|
759 |
-
"source": [
|
760 |
-
"# Let's train the SGD model and set the version name to \"sgd\"\n",
|
761 |
-
"pipeline_settings[\"model_version\"].version = \"sgd\"\n",
|
762 |
-
"\n",
|
763 |
-
"# the `with_options` method allows us to pass in pipeline settings\n",
|
764 |
-
"# and returns a configured pipeline\n",
|
765 |
-
"training_configured = training.with_options(**pipeline_settings)\n",
|
766 |
-
"\n",
|
767 |
-
"# We can now run this as usual\n",
|
768 |
-
"training_configured(\n",
|
769 |
-
" model_type=\"sgd\",\n",
|
770 |
-
" train_dataset_id=dataset_trn_artifact_version.id,\n",
|
771 |
-
" test_dataset_id=dataset_tst_artifact_version.id\n",
|
772 |
-
")"
|
773 |
-
]
|
774 |
-
},
|
775 |
-
{
|
776 |
-
"cell_type": "code",
|
777 |
-
"execution_count": null,
|
778 |
-
"id": "9b8e0002",
|
779 |
-
"metadata": {},
|
780 |
-
"outputs": [],
|
781 |
-
"source": [
|
782 |
-
"# Let's train the RF model and set the version name to \"rf\"\n",
|
783 |
-
"pipeline_settings[\"model_version\"].version = \"rf\"\n",
|
784 |
-
"\n",
|
785 |
-
"# the `with_options` method allows us to pass in pipeline settings\n",
|
786 |
-
"# and returns a configured pipeline\n",
|
787 |
-
"training_configured = training.with_options(**pipeline_settings)\n",
|
788 |
-
"\n",
|
789 |
-
"# Let's run it again to make sure we have two versions\n",
|
790 |
-
"training_configured(\n",
|
791 |
-
" model_type=\"rf\",\n",
|
792 |
-
" train_dataset_id=dataset_trn_artifact_version.id,\n",
|
793 |
-
" test_dataset_id=dataset_tst_artifact_version.id\n",
|
794 |
-
")"
|
795 |
-
]
|
796 |
-
},
|
797 |
-
{
|
798 |
-
"cell_type": "markdown",
|
799 |
-
"id": "09597223",
|
800 |
-
"metadata": {},
|
801 |
-
"source": [
|
802 |
-
"This time, running both pipelines has created two associated **model versions**.\n",
|
803 |
-
"You can list your ZenML model and their versions as follows:"
|
804 |
-
]
|
805 |
-
},
|
806 |
-
{
|
807 |
-
"cell_type": "code",
|
808 |
-
"execution_count": null,
|
809 |
-
"id": "fbb25913",
|
810 |
-
"metadata": {},
|
811 |
-
"outputs": [],
|
812 |
-
"source": [
|
813 |
-
"zenml_model = client.get_model(\"breast_cancer_classifier\")\n",
|
814 |
-
"print(zenml_model)\n",
|
815 |
-
"\n",
|
816 |
-
"print(f\"Model {zenml_model.name} has {len(zenml_model.versions)} versions\")\n",
|
817 |
-
"\n",
|
818 |
-
"zenml_model.versions[0].version, zenml_model.versions[1].version"
|
819 |
-
]
|
820 |
-
},
|
821 |
-
{
|
822 |
-
"cell_type": "markdown",
|
823 |
-
"id": "e82cfac2",
|
824 |
-
"metadata": {},
|
825 |
-
"source": [
|
826 |
-
"The interesting part is that ZenML went ahead and linked all artifacts produced by the\n",
|
827 |
-
"pipelines to that model version, including the two pickle files that represent our\n",
|
828 |
-
"SGD and RandomForest classifier. We can see all artifacts directly from the model\n",
|
829 |
-
"version object:"
|
830 |
-
]
|
831 |
-
},
|
832 |
-
{
|
833 |
-
"cell_type": "code",
|
834 |
-
"execution_count": null,
|
835 |
-
"id": "31211413",
|
836 |
-
"metadata": {},
|
837 |
-
"outputs": [],
|
838 |
-
"source": [
|
839 |
-
"# Let's load the RF version\n",
|
840 |
-
"rf_zenml_model_version = client.get_model_version(\"breast_cancer_classifier\", \"rf\")\n",
|
841 |
-
"\n",
|
842 |
-
"# We can now load our classifier directly as well\n",
|
843 |
-
"random_forest_classifier = rf_zenml_model_version.get_artifact(\"sklearn_classifier\").load()\n",
|
844 |
-
"\n",
|
845 |
-
"random_forest_classifier"
|
846 |
-
]
|
847 |
-
},
|
848 |
-
{
|
849 |
-
"cell_type": "markdown",
|
850 |
-
"id": "53517a9a",
|
851 |
-
"metadata": {},
|
852 |
-
"source": [
|
853 |
-
"If you are a [ZenML Cloud](https://zenml.io/cloud) user, you can see all of this visualized in the dashboard:\n",
|
854 |
-
"\n",
|
855 |
-
"<img src=\".assets/cloud_mcp_screenshot.png\" width=\"70%\" alt=\"Model Control Plane\">"
|
856 |
-
]
|
857 |
-
},
|
858 |
-
{
|
859 |
-
"cell_type": "markdown",
|
860 |
-
"id": "eb645dde",
|
861 |
-
"metadata": {},
|
862 |
-
"source": [
|
863 |
-
"There is a lot more you can do with ZenML models, including the ability to\n",
|
864 |
-
"track metrics by adding metadata to it, or having them persist in a model\n",
|
865 |
-
"registry. However, these topics can be explored more in the\n",
|
866 |
-
"[ZenML docs](https://docs.zenml.io).\n",
|
867 |
-
"\n",
|
868 |
-
"For now, we will use the ZenML model control plane to promote our best\n",
|
869 |
-
"model to `production`. You can do this by simply setting the `stage` of\n",
|
870 |
-
"your chosen model version to the `production` tag."
|
871 |
-
]
|
872 |
-
},
|
873 |
-
{
|
874 |
-
"cell_type": "code",
|
875 |
-
"execution_count": null,
|
876 |
-
"id": "26b718f8",
|
877 |
-
"metadata": {},
|
878 |
-
"outputs": [],
|
879 |
-
"source": [
|
880 |
-
"# Set our best classifier to production\n",
|
881 |
-
"rf_zenml_model_version.set_stage(\"production\", force=True)"
|
882 |
-
]
|
883 |
-
},
|
884 |
-
{
|
885 |
-
"cell_type": "markdown",
|
886 |
-
"id": "9fddf3d0",
|
887 |
-
"metadata": {},
|
888 |
-
"source": [
|
889 |
-
"Of course, normally one would only promote the model by comparing to all other model\n",
|
890 |
-
"versions and doing some other tests. But that's a bit more advanced use-case. See the\n",
|
891 |
-
"[e2e_batch example](https://github.com/zenml-io/zenml/tree/main/examples/e2e) to get\n",
|
892 |
-
"more insight into that sort of flow!"
|
893 |
-
]
|
894 |
-
},
|
895 |
-
{
|
896 |
-
"cell_type": "markdown",
|
897 |
-
"id": "2ecbc8cf",
|
898 |
-
"metadata": {},
|
899 |
-
"source": [
|
900 |
-
"<img src=\".assets/cloud_mcp.png\" width=\"60%\" alt=\"Model Control Plane\">"
|
901 |
-
]
|
902 |
-
},
|
903 |
-
{
|
904 |
-
"cell_type": "markdown",
|
905 |
-
"id": "8f1146db",
|
906 |
-
"metadata": {},
|
907 |
-
"source": [
|
908 |
-
"Once the model is promoted, we can now consume the right model version in our\n",
|
909 |
-
"batch inference pipeline directly. Let's see how that works."
|
910 |
]
|
911 |
},
|
912 |
{
|
@@ -914,7 +49,7 @@
|
|
914 |
"id": "d6306f14",
|
915 |
"metadata": {},
|
916 |
"source": [
|
917 |
-
"# π«
Step
|
918 |
]
|
919 |
},
|
920 |
{
|
@@ -926,147 +61,43 @@
|
|
926 |
"with `live data`. The critical step here is the `inference_predict` step, where we load the model in memory\n",
|
927 |
"and generate predictions:\n",
|
928 |
"\n",
|
929 |
-
"<img src=\"
|
930 |
-
]
|
931 |
-
},
|
932 |
-
{
|
933 |
-
"cell_type": "code",
|
934 |
-
"execution_count": null,
|
935 |
-
"id": "92c4c7dc",
|
936 |
-
"metadata": {},
|
937 |
-
"outputs": [],
|
938 |
-
"source": [
|
939 |
-
"@step\n",
|
940 |
-
"def inference_predict(dataset_inf: pd.DataFrame) -> Annotated[pd.Series, \"predictions\"]:\n",
|
941 |
-
" \"\"\"Predictions step\"\"\"\n",
|
942 |
-
" # Get the model_version\n",
|
943 |
-
" model_version = get_step_context().model_version\n",
|
944 |
-
"\n",
|
945 |
-
" # run prediction from memory\n",
|
946 |
-
" predictor = model_version.load_artifact(\"sklearn_classifier\")\n",
|
947 |
-
" predictions = predictor.predict(dataset_inf)\n",
|
948 |
-
"\n",
|
949 |
-
" predictions = pd.Series(predictions, name=\"predicted\")\n",
|
950 |
-
"\n",
|
951 |
-
" return predictions\n"
|
952 |
-
]
|
953 |
-
},
|
954 |
-
{
|
955 |
-
"cell_type": "markdown",
|
956 |
-
"id": "3aeb227b",
|
957 |
-
"metadata": {},
|
958 |
-
"source": [
|
959 |
-
"Apart from the loading the model, we must also load the preprocessing pipeline that we ran in feature engineering,\n",
|
960 |
-
"so that we can do the exact steps that we did on training time, in inference time. Let's bring it all together:"
|
961 |
]
|
962 |
},
|
963 |
{
|
964 |
"cell_type": "code",
|
965 |
"execution_count": null,
|
966 |
-
"id": "
|
967 |
"metadata": {},
|
968 |
"outputs": [],
|
969 |
"source": [
|
970 |
-
"
|
971 |
-
"def inference(preprocess_pipeline_id: UUID):\n",
|
972 |
-
" \"\"\"Model batch inference pipeline\"\"\"\n",
|
973 |
-
" # random_state = client.get_artifact_version(id=preprocess_pipeline_id).metadata[\"random_state\"].value\n",
|
974 |
-
" # target = client.get_artifact_version(id=preprocess_pipeline_id).run_metadata['target'].value\n",
|
975 |
-
" random_state = 42\n",
|
976 |
-
" target = \"target\"\n",
|
977 |
-
"\n",
|
978 |
-
" df_inference = data_loader(\n",
|
979 |
-
" random_state=random_state, is_inference=True\n",
|
980 |
-
" )\n",
|
981 |
-
" df_inference = inference_preprocessor(\n",
|
982 |
-
" dataset_inf=df_inference,\n",
|
983 |
-
" # We use the preprocess pipeline from the feature engineering pipeline\n",
|
984 |
-
" preprocess_pipeline=ExternalArtifact(id=preprocess_pipeline_id),\n",
|
985 |
-
" target=target,\n",
|
986 |
-
" )\n",
|
987 |
-
" inference_predict(\n",
|
988 |
-
" dataset_inf=df_inference,\n",
|
989 |
-
" )\n"
|
990 |
]
|
991 |
},
|
992 |
{
|
993 |
"cell_type": "markdown",
|
994 |
-
"id": "
|
995 |
-
"metadata": {},
|
996 |
-
"source": [
|
997 |
-
"The way to load the right model is to pass in the `production` stage into the `ModelVersion` config this time.\n",
|
998 |
-
"This will ensure to always load the production model, decoupled from all other pipelines:"
|
999 |
-
]
|
1000 |
-
},
|
1001 |
-
{
|
1002 |
-
"cell_type": "code",
|
1003 |
-
"execution_count": null,
|
1004 |
-
"id": "61bf5939",
|
1005 |
-
"metadata": {},
|
1006 |
-
"outputs": [],
|
1007 |
-
"source": [
|
1008 |
-
"pipeline_settings = {\"enable_cache\": False}\n",
|
1009 |
-
"\n",
|
1010 |
-
"# Lets add some metadata to the model to make it identifiable\n",
|
1011 |
-
"pipeline_settings[\"model_version\"] = ModelVersion(\n",
|
1012 |
-
" name=\"breast_cancer_classifier\",\n",
|
1013 |
-
" version=\"production\", # We can pass in the stage name here!\n",
|
1014 |
-
" license=\"Apache 2.0\",\n",
|
1015 |
-
" description=\"A breast cancer classifier\",\n",
|
1016 |
-
" tags=[\"breast_cancer\", \"classifier\"],\n",
|
1017 |
-
")"
|
1018 |
-
]
|
1019 |
-
},
|
1020 |
-
{
|
1021 |
-
"cell_type": "code",
|
1022 |
-
"execution_count": null,
|
1023 |
-
"id": "ff3402f1",
|
1024 |
"metadata": {},
|
1025 |
-
"outputs": [],
|
1026 |
"source": [
|
1027 |
-
"
|
1028 |
-
"# and returns a configured pipeline\n",
|
1029 |
-
"inference_configured = inference.with_options(**pipeline_settings)\n",
|
1030 |
-
"\n",
|
1031 |
-
"# Let's run it again to make sure we have two versions\n",
|
1032 |
-
"# We need to pass in the ID of the preprocessing done in the feature engineering pipeline\n",
|
1033 |
-
"# in order to avoid training-serving skew\n",
|
1034 |
-
"inference_configured(\n",
|
1035 |
-
" preprocess_pipeline_id=preprocessing_pipeline_artifact_version.id\n",
|
1036 |
-
")"
|
1037 |
]
|
1038 |
},
|
1039 |
{
|
1040 |
"cell_type": "markdown",
|
1041 |
-
"id": "
|
1042 |
"metadata": {},
|
1043 |
"source": [
|
1044 |
-
"
|
1045 |
-
"that were returned in the pipeline. This completes the MLOps loop of training to inference:"
|
1046 |
]
|
1047 |
},
|
1048 |
{
|
1049 |
"cell_type": "code",
|
1050 |
"execution_count": null,
|
1051 |
-
"id": "
|
1052 |
"metadata": {},
|
1053 |
"outputs": [],
|
1054 |
"source": [
|
1055 |
-
"
|
1056 |
-
"production_model_version = client.get_model_version(\"breast_cancer_classifier\", \"production\")\n",
|
1057 |
-
"\n",
|
1058 |
-
"# Get the predictions artifact\n",
|
1059 |
-
"production_model_version.get_artifact(\"predictions\").load()"
|
1060 |
-
]
|
1061 |
-
},
|
1062 |
-
{
|
1063 |
-
"cell_type": "markdown",
|
1064 |
-
"id": "b0a73cdf",
|
1065 |
-
"metadata": {},
|
1066 |
-
"source": [
|
1067 |
-
"You can also see all predictions ever created as a complete history in the dashboard:\n",
|
1068 |
-
"\n",
|
1069 |
-
"<img src=\".assets/cloud_mcp_predictions.png\" width=\"70%\" alt=\"Model Control Plane\">"
|
1070 |
]
|
1071 |
},
|
1072 |
{
|
|
|
11 |
"\n",
|
12 |
"This repository is a minimalistic MLOps project intended as a starting point to learn how to put ML workflows in production. It features: \n",
|
13 |
"\n",
|
|
|
|
|
|
|
|
|
14 |
"Follow along this notebook to understand how you can use ZenML to productionalize your ML workflows!\n",
|
15 |
"\n",
|
16 |
"<img src=\"_assets/pipeline_overview.png\" width=\"50%\" alt=\"Pipelines Overview\">"
|
17 |
]
|
18 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
{
|
20 |
"cell_type": "markdown",
|
21 |
"id": "8c28b474",
|
|
|
29 |
"id": "87909827",
|
30 |
"metadata": {},
|
31 |
"source": [
|
32 |
+
"Lets run the training pipeline\n",
|
|
|
|
|
|
|
33 |
"\n",
|
34 |
+
"<img src=\"_assets/training_pipeline.png\" width=\"50%\" alt=\"Training pipeline\">"
|
|
|
|
|
|
|
|
|
35 |
]
|
36 |
},
|
37 |
{
|
|
|
41 |
"metadata": {},
|
42 |
"outputs": [],
|
43 |
"source": [
|
44 |
+
"!python run.py --training-pipeline"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
]
|
46 |
},
|
47 |
{
|
|
|
49 |
"id": "d6306f14",
|
50 |
"metadata": {},
|
51 |
"source": [
|
52 |
+
"# π«
Step 2: The inference pipeline"
|
53 |
]
|
54 |
},
|
55 |
{
|
|
|
61 |
"with `live data`. The critical step here is the `inference_predict` step, where we load the model in memory\n",
|
62 |
"and generate predictions:\n",
|
63 |
"\n",
|
64 |
+
"<img src=\"_assets/inference_pipeline.png\" width=\"45%\" alt=\"Inference pipeline\">"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
]
|
66 |
},
|
67 |
{
|
68 |
"cell_type": "code",
|
69 |
"execution_count": null,
|
70 |
+
"id": "9918a8a1-c569-494f-aa40-cb7bd3aaea07",
|
71 |
"metadata": {},
|
72 |
"outputs": [],
|
73 |
"source": [
|
74 |
+
"!python run.py --inference-pipeline"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
]
|
76 |
},
|
77 |
{
|
78 |
"cell_type": "markdown",
|
79 |
+
"id": "36140d24-a280-48eb-bb03-5e03280e128c",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
"metadata": {},
|
|
|
81 |
"source": [
|
82 |
+
"## Step 3: Deploying the pipeline to Huggingface"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
]
|
84 |
},
|
85 |
{
|
86 |
"cell_type": "markdown",
|
87 |
+
"id": "13bd8087-2ab0-4f9d-8bff-6266a05eb6e7",
|
88 |
"metadata": {},
|
89 |
"source": [
|
90 |
+
"<img src=\"_assets/deployment_pipeline.png\" width=\"45%\" alt=\"Deployment pipeline\">"
|
|
|
91 |
]
|
92 |
},
|
93 |
{
|
94 |
"cell_type": "code",
|
95 |
"execution_count": null,
|
96 |
+
"id": "8000849c-1ce8-4900-846e-3ef1873561f8",
|
97 |
"metadata": {},
|
98 |
"outputs": [],
|
99 |
"source": [
|
100 |
+
"!python run.py --deployment-pipeline"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
]
|
102 |
},
|
103 |
{
|