Spaces:
Running
Running
import gradio as gr | |
from langchain_community.document_loaders import PyPDFLoader | |
from huggingface_hub import AsyncInferenceClient, InferenceClient | |
import asyncio | |
model_name = "mistralai/Mixtral-8x7B-Instruct-v0.1" | |
async_client = AsyncInferenceClient(model=model_name) | |
sync_client = InferenceClient(model=model_name) | |
def summarise_pdf(pdf): | |
loader = PyPDFLoader(pdf.name) | |
pages = loader.load() | |
summary = asyncio.run(map_method(pages)) | |
return summary | |
async def map_method(pages): | |
chunk_size = 10 | |
chunks = [pages[i : i + chunk_size] for i in range(0, len(pages), chunk_size)] | |
tasks = [] | |
for chunk in chunks: | |
combined_content = combine_pages(chunk) | |
tasks.append(summarise_chunk(combined_content)) | |
chunk_summaries = await asyncio.gather(*tasks) | |
final_summary = reduce_summaries(chunk_summaries) | |
return final_summary | |
def combine_pages(pages): | |
combined_content = "\n\n".join([page.page_content for page in pages]) | |
return combined_content | |
async def summarise_chunk(chunk): | |
prompt = f"""Summarize the following document in 150-300 words, ensuring the most important ideas and main themes are highlighted:\n\n{chunk}""" | |
message = [{"role": "user", "content": prompt}] | |
result = await async_client.chat_completion( | |
messages=message, | |
max_tokens=2048, | |
temperature=0.1, | |
) | |
return result.choices[0].message["content"].strip() | |
def reduce_summaries(summaries): | |
combined_summaries = "\n\n".join(summaries) | |
reduce_prompt = f"Below is a collection of summaries, please synthesize them into a cohesive final summary, highlighting the key themes. Ensure the summary is concise and does not exceed 400 words:\n\n{combined_summaries}" | |
message = [{"role": "user", "content": reduce_prompt}] | |
result = sync_client.chat_completion( | |
messages=message, | |
max_tokens=2048, | |
temperature=0.1, | |
) | |
return result.choices[0].message["content"].strip() | |
with gr.Blocks(theme=gr.themes.Base()) as demo: | |
gr.Markdown("<H1>PDF Summariser</H1>") | |
gr.Markdown("<H3>Upload a PDF file and generate a summary</H3>") | |
gr.Markdown( | |
"<H6>This project uses a MapReduce method to split the PDF into chunks, generate summaries of each of the chunks asynchronously, and reduce them into a single final summary.</H6>" | |
) | |
gr.Markdown( | |
"<H6>Note: I have included The Metamorphosis by Franz Kafka as a default PDF to demonstrate its working on a large document. Replace this with any PDF you would like to summarise.</H6>" | |
) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
pdf = gr.File(label="Upload PDF", value="./TheMetamorphosis.pdf") | |
summarise_btn = gr.Button(value="Summarise PDF π", variant="primary") | |
with gr.Column(scale=3): | |
summary = gr.TextArea(label="Summary") | |
summarise_btn.click(fn=summarise_pdf, inputs=pdf, outputs=summary) | |
demo.launch() | |