Spaces:
Sleeping
Sleeping
httpdaniel
commited on
Commit
·
ed02a3d
1
Parent(s):
333f45e
Adding gradio interface
Browse files
app.py
CHANGED
@@ -1,7 +1,142 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
def
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
7 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from langchain_community.document_loaders import PyPDFLoader
|
3 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
4 |
+
from langchain_chroma import Chroma
|
5 |
+
from langchain_huggingface.embeddings import HuggingFaceEmbeddings
|
6 |
+
from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace
|
7 |
+
from langchain import hub
|
8 |
+
from langchain_core.output_parsers import StrOutputParser
|
9 |
+
from langchain_core.runnables import RunnablePassthrough
|
10 |
|
11 |
+
def initialise_vectorstore(pdf, progress=gr.Progress()):
|
12 |
+
progress(0, desc="Reading PDF")
|
13 |
+
|
14 |
+
loader = PyPDFLoader(pdf.name)
|
15 |
+
pages = loader.load()
|
16 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
17 |
+
splits = text_splitter.split_documents(pages)
|
18 |
+
|
19 |
+
progress(0.5, desc="Initialising Vectorstore")
|
20 |
+
|
21 |
+
vectorstore = Chroma.from_documents(
|
22 |
+
splits,
|
23 |
+
embedding=HuggingFaceEmbeddings()
|
24 |
+
)
|
25 |
+
|
26 |
+
progress(1, desc="Complete")
|
27 |
+
|
28 |
+
return vectorstore, progress
|
29 |
+
|
30 |
+
def initialise_chain(llm, vectorstore, progress=gr.Progress()):
|
31 |
+
|
32 |
+
progress(0, desc="Initialising LLM")
|
33 |
+
|
34 |
+
llm = HuggingFaceEndpoint(
|
35 |
+
repo_id=llm,
|
36 |
+
task="text-generation",
|
37 |
+
max_new_tokens=512,
|
38 |
+
do_sample=False,
|
39 |
+
repetition_penalty=1.03
|
40 |
+
)
|
41 |
+
|
42 |
+
chat = ChatHuggingFace(
|
43 |
+
llm=llm,
|
44 |
+
verbose=True
|
45 |
+
)
|
46 |
+
|
47 |
+
progress(0.5, desc="Initialising RAG Chain")
|
48 |
+
|
49 |
+
retriever = vectorstore.as_retriever()
|
50 |
+
prompt = hub.pull("rlm/rag-prompt")
|
51 |
+
parser = StrOutputParser()
|
52 |
+
|
53 |
+
rag_chain = {"context": retriever, "question": RunnablePassthrough()} | prompt | chat | parser
|
54 |
+
|
55 |
+
progress(1, desc="Complete")
|
56 |
+
|
57 |
+
return rag_chain, progress
|
58 |
+
|
59 |
+
def send(message, rag_chain, chat_history):
|
60 |
+
response = rag_chain.invoke(message)
|
61 |
+
chat_history.append((message, response))
|
62 |
+
return "", chat_history
|
63 |
+
|
64 |
+
def restart():
|
65 |
+
return f"Restarting"
|
66 |
+
|
67 |
+
|
68 |
+
with gr.Blocks() as demo:
|
69 |
+
|
70 |
+
vectorstore = gr.State()
|
71 |
+
rag_chain = gr.State()
|
72 |
+
|
73 |
+
gr.Markdown("<H1>Talk to Documents</H1>")
|
74 |
+
gr.Markdown("<H3>Upload and ask questions about your PDF files</H3>")
|
75 |
+
gr.Markdown("<H6>Note: This project uses LangChain to perform RAG (Retrieval Augmented Generation) on PDF files, allowing users to ask any questions related to their contents. When a PDF file is uploaded, it is embedded and stored in an in-memory Chroma vectorstore, which the chatbot uses as a source of knowledge when aswering user questions.</H6>")
|
76 |
+
|
77 |
+
# Vectorstore Tab
|
78 |
+
with gr.Tab("Vectorstore"):
|
79 |
+
with gr.Row():
|
80 |
+
input_pdf = gr.File()
|
81 |
+
with gr.Row():
|
82 |
+
with gr.Column(scale=1, min_width=0):
|
83 |
+
pass
|
84 |
+
with gr.Column(scale=2, min_width=0):
|
85 |
+
initialise_vectorstore_btn = gr.Button(
|
86 |
+
"Initialise Vectorstore",
|
87 |
+
variant='primary'
|
88 |
+
)
|
89 |
+
with gr.Column(scale=1, min_width=0):
|
90 |
+
pass
|
91 |
+
with gr.Row():
|
92 |
+
vectorstore_initialisation_progress = gr.Textbox(value="None", label="Initialization")
|
93 |
+
|
94 |
+
# RAG Chain
|
95 |
+
with gr.Tab("RAG Chain"):
|
96 |
+
with gr.Row():
|
97 |
+
language_model = gr.Radio(["microsoft/Phi-3-mini-4k-instruct", "mistralai/Mistral-7B-Instruct-v0.2", "nvidia/Mistral-NeMo-Minitron-8B-Base"])
|
98 |
+
with gr.Row():
|
99 |
+
with gr.Column(scale=1, min_width=0):
|
100 |
+
pass
|
101 |
+
with gr.Column(scale=2, min_width=0):
|
102 |
+
initialise_chain_btn = gr.Button(
|
103 |
+
"Initialise RAG Chain",
|
104 |
+
variant='primary'
|
105 |
+
)
|
106 |
+
with gr.Column(scale=1, min_width=0):
|
107 |
+
pass
|
108 |
+
with gr.Row():
|
109 |
+
chain_initialisation_progress = gr.Textbox(value="None", label="Initialization")
|
110 |
+
|
111 |
+
# Chatbot Tab
|
112 |
+
with gr.Tab("Chatbot"):
|
113 |
+
with gr.Row():
|
114 |
+
chatbot = gr.Chatbot()
|
115 |
+
with gr.Accordion("Advanced - Document references", open=False):
|
116 |
+
with gr.Row():
|
117 |
+
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
|
118 |
+
source1_page = gr.Number(label="Page", scale=1)
|
119 |
+
with gr.Row():
|
120 |
+
doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
|
121 |
+
source2_page = gr.Number(label="Page", scale=1)
|
122 |
+
with gr.Row():
|
123 |
+
doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
|
124 |
+
source3_page = gr.Number(label="Page", scale=1)
|
125 |
+
with gr.Row():
|
126 |
+
message = gr.Textbox()
|
127 |
+
with gr.Row():
|
128 |
+
send_btn = gr.Button(
|
129 |
+
"Send",
|
130 |
+
variant=["primary"]
|
131 |
+
)
|
132 |
+
restart_btn = gr.Button(
|
133 |
+
"Restart",
|
134 |
+
variant=["secondary"]
|
135 |
+
)
|
136 |
+
|
137 |
+
initialise_vectorstore_btn.click(fn=initialise_vectorstore, inputs=input_pdf, outputs=[vectorstore, vectorstore_initialisation_progress])
|
138 |
+
initialise_chain_btn.click(fn=initialise_chain, inputs=[language_model, vectorstore], outputs=[rag_chain, chain_initialisation_progress])
|
139 |
+
send_btn.click(fn=send, inputs=[message, rag_chain, chatbot], outputs=[message, chatbot])
|
140 |
+
restart_btn.click(fn=restart)
|
141 |
|
|
|
142 |
demo.launch()
|