from typing import List, Optional, Tuple import numpy as np import torch from torch.nn import functional as F def get_position_map_from_depth(depth, mask, intrinsics, extrinsics, image_wh=None): """Compute the position map from the depth map and the camera parameters for a batch of views. Args: depth (torch.Tensor): The depth maps with the shape (B, H, W, 1). mask (torch.Tensor): The masks with the shape (B, H, W, 1). intrinsics (torch.Tensor): The camera intrinsics matrices with the shape (B, 3, 3). extrinsics (torch.Tensor): The camera extrinsics matrices with the shape (B, 4, 4). image_wh (Tuple[int, int]): The image width and height. Returns: torch.Tensor: The position maps with the shape (B, H, W, 3). """ if image_wh is None: image_wh = depth.shape[2], depth.shape[1] B, H, W, _ = depth.shape depth = depth.squeeze(-1) u_coord, v_coord = torch.meshgrid( torch.arange(image_wh[0]), torch.arange(image_wh[1]), indexing="xy" ) u_coord = u_coord.type_as(depth).unsqueeze(0).expand(B, -1, -1) v_coord = v_coord.type_as(depth).unsqueeze(0).expand(B, -1, -1) # Compute the position map by back-projecting depth pixels to 3D space x = ( (u_coord - intrinsics[:, 0, 2].unsqueeze(-1).unsqueeze(-1)) * depth / intrinsics[:, 0, 0].unsqueeze(-1).unsqueeze(-1) ) y = ( (v_coord - intrinsics[:, 1, 2].unsqueeze(-1).unsqueeze(-1)) * depth / intrinsics[:, 1, 1].unsqueeze(-1).unsqueeze(-1) ) z = depth # Concatenate to form the 3D coordinates in the camera frame camera_coords = torch.stack([x, y, z], dim=-1) # Apply the extrinsic matrix to get coordinates in the world frame coords_homogeneous = torch.nn.functional.pad( camera_coords, (0, 1), "constant", 1.0 ) # Add a homogeneous coordinate world_coords = torch.matmul( coords_homogeneous.view(B, -1, 4), extrinsics.transpose(1, 2) ).view(B, H, W, 4) # Apply the mask to the position map position_map = world_coords[..., :3] * mask return position_map def get_position_map_from_depth_ortho( depth, mask, extrinsics, ortho_scale, image_wh=None ): """Compute the position map from the depth map and the camera parameters for a batch of views using orthographic projection with a given ortho_scale. Args: depth (torch.Tensor): The depth maps with the shape (B, H, W, 1). mask (torch.Tensor): The masks with the shape (B, H, W, 1). extrinsics (torch.Tensor): The camera extrinsics matrices with the shape (B, 4, 4). ortho_scale (torch.Tensor): The scaling factor for the orthographic projection with the shape (B, 1, 1, 1). image_wh (Tuple[int, int]): Optional. The image width and height. Returns: torch.Tensor: The position maps with the shape (B, H, W, 3). """ if image_wh is None: image_wh = depth.shape[2], depth.shape[1] B, H, W, _ = depth.shape depth = depth.squeeze(-1) # Generating grid of coordinates in the image space u_coord, v_coord = torch.meshgrid( torch.arange(0, image_wh[0]), torch.arange(0, image_wh[1]), indexing="xy" ) u_coord = u_coord.type_as(depth).unsqueeze(0).expand(B, -1, -1) v_coord = v_coord.type_as(depth).unsqueeze(0).expand(B, -1, -1) # Compute the position map using orthographic projection with ortho_scale x = (u_coord - image_wh[0] / 2) / ortho_scale / image_wh[0] y = (v_coord - image_wh[1] / 2) / ortho_scale / image_wh[1] z = depth # Concatenate to form the 3D coordinates in the camera frame camera_coords = torch.stack([x, y, z], dim=-1) # Apply the extrinsic matrix to get coordinates in the world frame coords_homogeneous = torch.nn.functional.pad( camera_coords, (0, 1), "constant", 1.0 ) # Add a homogeneous coordinate world_coords = torch.matmul( coords_homogeneous.view(B, -1, 4), extrinsics.transpose(1, 2) ).view(B, H, W, 4) # Apply the mask to the position map position_map = world_coords[..., :3] * mask return position_map def get_opencv_from_blender(matrix_world, fov=None, image_size=None): # convert matrix_world to opencv format extrinsics opencv_world_to_cam = matrix_world.inverse() opencv_world_to_cam[1, :] *= -1 opencv_world_to_cam[2, :] *= -1 R, T = opencv_world_to_cam[:3, :3], opencv_world_to_cam[:3, 3] if fov is None: # orthographic camera return R, T R, T = R.unsqueeze(0), T.unsqueeze(0) # convert fov to opencv format intrinsics focal = 1 / np.tan(fov / 2) intrinsics = np.diag(np.array([focal, focal, 1])).astype(np.float32) opencv_cam_matrix = ( torch.from_numpy(intrinsics).unsqueeze(0).float().to(matrix_world.device) ) opencv_cam_matrix[:, :2, -1] += torch.tensor([image_size / 2, image_size / 2]).to( matrix_world.device ) opencv_cam_matrix[:, [0, 1], [0, 1]] *= image_size / 2 return R, T, opencv_cam_matrix def get_ray_directions( H: int, W: int, focal: float, principal: Optional[Tuple[float, float]] = None, use_pixel_centers: bool = True, ) -> torch.Tensor: """ Get ray directions for all pixels in camera coordinate. Args: H, W, focal, principal, use_pixel_centers: image height, width, focal length, principal point and whether use pixel centers Outputs: directions: (H, W, 3), the direction of the rays in camera coordinate """ pixel_center = 0.5 if use_pixel_centers else 0 cx, cy = W / 2, H / 2 if principal is None else principal i, j = torch.meshgrid( torch.arange(W, dtype=torch.float32) + pixel_center, torch.arange(H, dtype=torch.float32) + pixel_center, indexing="xy", ) directions = torch.stack( [(i - cx) / focal, -(j - cy) / focal, -torch.ones_like(i)], -1 ) return F.normalize(directions, dim=-1) def get_rays( directions: torch.Tensor, c2w: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: """ Get ray origins and directions from camera coordinates to world coordinates Args: directions: (H, W, 3) ray directions in camera coordinates c2w: (4, 4) camera-to-world transformation matrix Outputs: rays_o, rays_d: (H, W, 3) ray origins and directions in world coordinates """ # Rotate ray directions from camera coordinate to the world coordinate rays_d = directions @ c2w[:3, :3].T rays_o = c2w[:3, 3].expand(rays_d.shape) return rays_o, rays_d def compute_plucker_embed( c2w: torch.Tensor, image_width: int, image_height: int, focal: float ) -> torch.Tensor: """ Computes Plucker coordinates for a camera. Args: c2w: (4, 4) camera-to-world transformation matrix image_width: Image width image_height: Image height focal: Focal length of the camera Returns: plucker: (6, H, W) Plucker embedding """ directions = get_ray_directions(image_height, image_width, focal) rays_o, rays_d = get_rays(directions, c2w) # Cross product to get Plucker coordinates cross = torch.cross(rays_o, rays_d, dim=-1) plucker = torch.cat((rays_d, cross), dim=-1) return plucker.permute(2, 0, 1) def get_plucker_embeds_from_cameras( c2w: List[torch.Tensor], fov: List[float], image_size: int ) -> torch.Tensor: """ Given lists of camera transformations and fov, returns the batched plucker embeddings. Args: c2w: list of camera-to-world transformation matrices fov: list of field of view values image_size: size of the image Returns: plucker_embeds: (B, 6, H, W) batched plucker embeddings """ plucker_embeds = [] for cam_matrix, cam_fov in zip(c2w, fov): focal = 0.5 * image_size / np.tan(0.5 * cam_fov) plucker = compute_plucker_embed(cam_matrix, image_size, image_size, focal) plucker_embeds.append(plucker) return torch.stack(plucker_embeds) def get_plucker_embeds_from_cameras_ortho( c2w: List[torch.Tensor], ortho_scale: List[float], image_size: int ): """ Given lists of camera transformations and fov, returns the batched plucker embeddings. Parameters: c2w: list of camera-to-world transformation matrices fov: list of field of view values image_size: size of the image Returns: plucker_embeds: plucker embeddings (B, 6, H, W) """ plucker_embeds = [] # compute pairwise mask and plucker embeddings for cam_matrix, scale in zip(c2w, ortho_scale): # blender to opencv to pytorch3d R, T = get_opencv_from_blender(cam_matrix) cam_pos = -R.T @ T view_dir = R.T @ torch.tensor([0, 0, 1]).float().to(cam_matrix.device) # normalize camera position cam_pos = F.normalize(cam_pos, dim=0) plucker = torch.concat([view_dir, cam_pos]) plucker = plucker.unsqueeze(-1).unsqueeze(-1).repeat(1, image_size, image_size) plucker_embeds.append(plucker) plucker_embeds = torch.stack(plucker_embeds) return plucker_embeds