Spaces:
Runtime error
Runtime error
File size: 9,756 Bytes
5e5faf7 98c3ab4 5e5faf7 e196b57 5e5faf7 4e206a5 5e5faf7 8d454d8 5c9af2e 5e5faf7 e728a84 5e5faf7 0262342 5e5faf7 8d454d8 c3b9254 9ffffed 8d454d8 9ffffed 8d454d8 9ffffed 8d454d8 9ffffed 8d454d8 9ffffed 8d454d8 9ffffed 8d454d8 9ffffed 8d454d8 9ffffed 5c9af2e 9ffffed 8f812f4 9ffffed 8f812f4 9ffffed 8f812f4 9ffffed 8f812f4 9ffffed 8f812f4 9ffffed 8f812f4 9ffffed 8f812f4 9ffffed 8f812f4 8d454d8 5e5faf7 661c6e3 5c9af2e 661c6e3 5c9af2e e196b57 5e5faf7 661c6e3 5e5faf7 661c6e3 5e5faf7 9ffffed 5e5faf7 e196b57 98c3ab4 8d454d8 661c6e3 98c3ab4 15822d1 5e5faf7 8d454d8 c3b9254 9ffffed 5e5faf7 8d454d8 5e5faf7 e728a84 5e5faf7 0262342 5e5faf7 5c9af2e 5e5faf7 e728a84 5e5faf7 e728a84 5e5faf7 e728a84 9ffffed 661c6e3 98c3ab4 5e5faf7 98c3ab4 9ffffed 5e5faf7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import pandas as pd
import numpy as np
import streamlit as st
from models import Generator, Discriminrator
from StyleMix import style_mix
import torch
import torchvision.transforms as T
from torchvision.utils import make_grid
from PIL import Image
from streamlit_lottie import st_lottie
from streamlit_option_menu import option_menu
import requests
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model_name = {
"aurora": 'huggan/fastgan-few-shot-aurora',
"painting": 'huggan/fastgan-few-shot-painting',
"shell": 'huggan/fastgan-few-shot-shells',
"fauvism": 'huggan/fastgan-few-shot-fauvism-still-life',
"universe": 'huggan/fastgan-few-shot-universe',
"grumpy cat": 'huggan/fastgan-few-shot-grumpy-cat',
"anime": 'huggan/fastgan-few-shot-anime-face',
"moon gate": 'huggan/fastgan-few-shot-moongate',
}
#@st.cache(allow_output_mutation=True)
def load_generator(model_name_or_path):
generator = Generator(in_channels=256, out_channels=3)
generator = generator.from_pretrained(model_name_or_path, in_channels=256, out_channels=3)
_ = generator.to(device)
_ = generator.eval()
return generator
def _denormalize(input: torch.Tensor) -> torch.Tensor:
return (input * 127.5) + 127.5
def generate_images(generator, number_imgs):
noise = torch.zeros(number_imgs, 256, 1, 1, device=device).normal_(0.0, 1.0)
with torch.no_grad():
gan_images, _ = generator(noise)
gan_images = _denormalize(gan_images.detach()).cpu()
gan_images = [i for i in gan_images]
gan_images = [make_grid(i, nrow=1, normalize=True) for i in gan_images]
gan_images = [i.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy() for i in gan_images]
gan_images = [Image.fromarray(i) for i in gan_images]
return gan_images
def load_lottieurl(url: str):
r = requests.get(url)
if r.status_code != 200:
return None
return r.json()
def show_model_summary(expanded):
st.subheader("Model gallery")
with st.expander('Image gallery', expanded=expanded):
col1, col2, col3, col4 = st.columns(4)
with col1:
st.markdown('Fauvism GAN [model](https://huggingface.co/huggan/fastgan-few-shot-fauvism-still-life)', unsafe_allow_html=True)
st.image('assets/image/fauvism.png', width=200)
st.markdown('Painting GAN [model](https://huggingface.co/huggan/fastgan-few-shot-painting)', unsafe_allow_html=True)
st.image('assets/image/painting.png', width=200)
with col2:
st.markdown('Aurora GAN [model](https://huggingface.co/huggan/fastgan-few-shot-aurora)', unsafe_allow_html=True)
st.image('assets/image/aurora.png', width=200)
st.markdown('Universe GAN [model](https://huggingface.co/huggan/fastgan-few-shot-universe)', unsafe_allow_html=True)
st.image('assets/image/universe.png', width=200)
with col3:
st.markdown('Anime GAN [model](https://huggingface.co/huggan/fastgan-few-shot-anime-face)', unsafe_allow_html=True)
st.image('assets/image/anime.png', width=200)
st.markdown('Shell GAN [model](https://huggingface.co/huggan/fastgan-few-shot-shells)', unsafe_allow_html=True)
st.image('assets/image/shell.png', width=200)
with col4:
st.markdown('Grumpy cat GAN [model](https://huggingface.co/huggan/fastgan-few-shot-grumpy-cat)', unsafe_allow_html=True)
st.image('assets/image/grumpy_cat.png', width=200)
st.markdown('Moon gate GAN [model](https://huggingface.co/huggan/fastgan-few-shot-moongate)', unsafe_allow_html=True)
st.image('assets/image/moon_gate.png', width=200)
with st.expander('Video gallery', expanded=False):
cols=st.columns(4)
# cols[0].write("Universe GAN")
# cols[0].image('assets/video/universe.gif')
# cols[0].write("Fauvism still life GAN")
# cols[0].image('assets/video/fauvism.gif')
#
# cols[1].write("Aurora GAN")
# cols[1].image('assets/video/aurora.gif')
# cols[1].write("Moon gate GAN")
# cols[1].image('assets/video/moon_gate.gif')
#
# cols[2].write("Anime GAN")
# cols[2].image('assets/video/anime.gif')
# cols[2].write("Painting GAN")
# cols[2].image('assets/video/painting.gif')
#
# cols[3].write("Grumpy cat GAN")
# cols[3].image('assets/video/grumpy_cat.gif')
cols[0].write("Universe GAN")
cols[0].video('assets/video/universe.mp4')
cols[0].write("Fauvism still life GAN")
cols[0].video('assets/video/fauvism.mp4')
cols[1].write("Aurora GAN")
cols[1].video('assets/video/aurora.mp4')
cols[1].write("Moon gate GAN")
cols[1].video('assets/video/moongate.mp4')
cols[2].write("Anime GAN")
cols[2].video('assets/video/anime.mp4')
cols[2].write("Painting GAN")
cols[2].video('assets/video/painting.mp4')
cols[3].write("Grumpy cat GAN")
cols[3].video('assets/video/grumpy.mp4')
def main():
st.set_page_config(
page_title="FastGAN Generator",
page_icon="🖥️",
layout="wide",
initial_sidebar_state="expanded"
)
lottie_penguin = load_lottieurl('https://assets7.lottiefiles.com/packages/lf20_mm4bsl3l.json')
with st.sidebar:
st_lottie(lottie_penguin, height=200)
choose = option_menu("FastGAN", ["Model Gallery", "Generate images", "Mix style"],
icons=['collection', 'file-plus', 'intersect'],
menu_icon="infinity", default_index=0,
styles={
"container": {"padding": ".0rem", "font-size": "14px"},
"nav-link-selected": {"color": "#000000", "font-size": "16px"},
}
)
st.sidebar.markdown(
"""
___
<p style='text-align: center'>
FastGAN is a few-shot GAN model trained on high-fidelity images which requires less computation resource and samples for training.
<br/>
<a href="https://arxiv.org/abs/2101.04775" target="_blank">Article</a>
</p>
<p style='text-align: center; font-size: 14px;'>
Model training and Spaces creating by
<br/>
<a href="https://www.linkedin.com/in/vumichien/" target="_blank">Chien Vu</a> | <a href="https://www.linkedin.com/in/nhu-hoang/" target="_blank">Nhu Hoang</a>
<br/>
</p>
""",
unsafe_allow_html=True,
)
if choose == 'Model Gallery':
st.header("Welcome to FastGAN")
show_model_summary(True)
elif choose == 'Generate images':
st.header("Generate images")
col11, col12, col13 = st.columns([3,3.5,3.5])
with col11:
img_type = st.selectbox("Choose type of image to generate", index=0,
options=["aurora", "anime", "painting", "fauvism", "shell", "universe", "grumpy cat", "moon gate"])
number_imgs = st.slider('How many images you want to generate ?', min_value=1, max_value=5)
if number_imgs is None:
st.write('Invalid number ! Please insert number of images to generate !')
raise ValueError('Invalid number ! Please insert number of images to generate !')
generate_button = st.button('Get Image')
if generate_button:
st.markdown("""
<small><i>Predictions may take up to 1 minute under high load. Please stand by.</i></small>
""",
unsafe_allow_html=True,)
if generate_button:
with col11:
with st.spinner(text=f"Loading selected model..."):
generator = load_generator(model_name[img_type])
with st.spinner(text=f"Generating images..."):
gan_images = generate_images(generator, number_imgs)
with col12:
st.image(gan_images[0], width=300)
if len(gan_images) > 1:
with col13:
if len(gan_images) <= 2:
st.image(gan_images[1], width=300)
else:
st.image(gan_images[1:], width=150)
elif choose == 'Mix style':
st.header("Mix style")
st.markdown(
"""
<p style='text-align: left'>
Get the style representations of 2 images generated from the model to create a new one that mixes the style of two.
</p>
""",
unsafe_allow_html=True,
)
st.markdown("""___""")
col21, col22 = st.columns([3, 6])
with col21:
img_type = st.selectbox("Choose type of image to mix", index=0,
options=["aurora", "anime", "painting", "fauvism", "shell", "universe", "grumpy cat", "moon gate"])
number_imgs = st.slider('How many images you want to generate ?', min_value=1, max_value=3)
generate_button = st.button('Mix style')
if generate_button:
with col21:
with st.spinner(text=f"Mixing styles..."):
mix_imgs = style_mix(model_name[img_type], number_imgs, device)
mix_imgs = make_grid(mix_imgs, nrow=number_imgs+1, normalize=True)
mix_imgs = mix_imgs.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
mix_imgs = Image.fromarray(mix_imgs)
with col22:
st.image(mix_imgs, width=600)
if __name__ == '__main__':
main()
|