Spaces:
Runtime error
Runtime error
import torch | |
from torch import nn | |
import torch.optim as optim | |
import torch.nn.functional as F | |
from torch.utils.data.dataloader import DataLoader | |
from torchvision import transforms | |
from torchvision import utils as vutils | |
from models import Generator | |
from utils import copy_G_params, load_params | |
def get_early_features(net, noise): | |
with torch.no_grad(): | |
feat_4 = net._init(noise) | |
feat_8 = net._upsample_8(feat_4) | |
feat_16 = net._upsample_16(feat_8) | |
feat_32 = net._upsample_32(feat_16) | |
feat_64 = net._upsample_64(feat_32) | |
return feat_8, feat_16, feat_32, feat_64 | |
def get_late_features(net, feat_64, feat_8, feat_16, feat_32): | |
with torch.no_grad(): | |
feat_128 = net._upsample_128(feat_64) | |
feat_128 = net._sle_128(feat_8, feat_128) | |
feat_256 = net._upsample_256(feat_128) | |
feat_256 = net._sle_256(feat_16, feat_256) | |
feat_512 = net._upsample_512(feat_256) | |
feat_512 = net._sle_512(feat_32, feat_512) | |
feat_1024 = net._upsample_1024(feat_512) | |
return net._out_1024(feat_1024) | |
def style_mix(model_name_or_path, bs, device): | |
_in_channels = 256 | |
im_size = 1024 | |
netG = Generator(in_channels=_in_channels, out_channels=3) | |
netG = netG.from_pretrained(model_name_or_path, in_channels=256, out_channels=3) | |
_ = netG.to(device) | |
_ = netG.eval() | |
avg_param_G = copy_G_params(netG) | |
load_params(netG, avg_param_G) | |
noise_a = torch.randn(bs, 256, 1, 1, device=device).to(device) | |
noise_b = torch.randn(bs, 256, 1, 1, device=device).to(device) | |
feat_8_a, feat_16_a, feat_32_a, feat_64_a = get_early_features(netG, noise_a) | |
feat_8_b, feat_16_b, feat_32_b, feat_64_b = get_early_features(netG, noise_b) | |
images_b = get_late_features(netG, feat_64_b, feat_8_b, feat_16_b, feat_32_b) | |
images_a = get_late_features(netG, feat_64_a, feat_8_a, feat_16_a, feat_32_a) | |
imgs = [ torch.ones(1, 3, im_size, im_size) ] | |
imgs.append(images_b.cpu()) | |
for i in range(bs): | |
imgs.append(images_a[i].unsqueeze(0).cpu()) | |
gimgs = get_late_features(netG, feat_64_a[i].unsqueeze(0).repeat(bs, 1, 1, 1), feat_8_b, feat_16_b, feat_32_b) | |
imgs.append(gimgs.cpu()) | |
imgs = torch.cat(imgs) | |
# vutils.save_image(imgs.add(1).mul(0.5), 'style_mix/style_mix_2.jpg', nrow=bs+1) | |
return imgs | |