import torch from torchvision.utils import make_grid from torchvision import transforms import torchvision.transforms.functional as TF from torch import nn, optim from torch.optim.lr_scheduler import CosineAnnealingLR from torch.utils.data import DataLoader, Dataset from huggingface_hub import hf_hub_download import requests import gradio as gr class Upsample(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=4, stride=2, padding=1, dropout=True): super(Upsample, self).__init__() self.dropout = dropout self.block = nn.Sequential( nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride, padding, bias=nn.InstanceNorm2d), nn.InstanceNorm2d(out_channels), nn.ReLU(inplace=True) ) self.dropout_layer = nn.Dropout2d(0.5) def forward(self, x, shortcut=None): x = self.block(x) if self.dropout: x = self.dropout_layer(x) if shortcut is not None: x = torch.cat([x, shortcut], dim=1) return x class Downsample(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=4, stride=2, padding=1, apply_instancenorm=True): super(Downsample, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=nn.InstanceNorm2d) self.norm = nn.InstanceNorm2d(out_channels) self.relu = nn.LeakyReLU(0.2, inplace=True) self.apply_norm = apply_instancenorm def forward(self, x): x = self.conv(x) if self.apply_norm: x = self.norm(x) x = self.relu(x) return x class CycleGAN_Unet_Generator(nn.Module): def __init__(self, filter=64): super(CycleGAN_Unet_Generator, self).__init__() self.downsamples = nn.ModuleList([ Downsample(3, filter, kernel_size=4, apply_instancenorm=False), # (b, filter, 128, 128) Downsample(filter, filter * 2), # (b, filter * 2, 64, 64) Downsample(filter * 2, filter * 4), # (b, filter * 4, 32, 32) Downsample(filter * 4, filter * 8), # (b, filter * 8, 16, 16) Downsample(filter * 8, filter * 8), # (b, filter * 8, 8, 8) Downsample(filter * 8, filter * 8), # (b, filter * 8, 4, 4) Downsample(filter * 8, filter * 8), # (b, filter * 8, 2, 2) ]) self.upsamples = nn.ModuleList([ Upsample(filter * 8, filter * 8), Upsample(filter * 16, filter * 8), Upsample(filter * 16, filter * 8), Upsample(filter * 16, filter * 4, dropout=False), Upsample(filter * 8, filter * 2, dropout=False), Upsample(filter * 4, filter, dropout=False) ]) self.last = nn.Sequential( nn.ConvTranspose2d(filter * 2, 3, kernel_size=4, stride=2, padding=1), nn.Tanh() ) def forward(self, x): skips = [] for l in self.downsamples: x = l(x) skips.append(x) skips = reversed(skips[:-1]) for l, s in zip(self.upsamples, skips): x = l(x, s) out = self.last(x) return out class ImageTransform: def __init__(self, img_size=256): self.transform = { 'train': transforms.Compose([ transforms.Resize((img_size, img_size)), transforms.RandomHorizontalFlip(), transforms.RandomVerticalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.5], std=[0.5]) ]), 'test': transforms.Compose([ transforms.Resize((img_size, img_size)), transforms.ToTensor(), transforms.Normalize(mean=[0.5], std=[0.5]) ])} def __call__(self, img, phase='train'): img = self.transform[phase](img) return img path = hf_hub_download('huggan/NeonGAN', 'model.bin') model_gen_n = torch.load(path, map_location=torch.device('cpu')) transform = ImageTransform(img_size=256) inputs = [ gr.inputs.Image(type="pil", label="Original Image") ] outputs = [ gr.outputs.Image(type="pil", label="Neon Image") ] def get_output_image(img): img = transform(img, phase='test') gen_img = model_gen_n(img.unsqueeze(0))[0] # Reverse Normalization gen_img = gen_img * 0.5 + 0.5 gen_img = gen_img * 255 gen_img = gen_img.detach().cpu().numpy().astype(np.uint8) gen_img = np.transpose(gen_img, [1,2,0]) gen_img = Image.fromarray(gen_img) return gen_img gr.Interface( get_output_image, inputs, outputs, examples = examples, title=title, description=description, theme="huggingface", ).launch(enable_queue=True)