|
|
|
"""Contains the implementation of generator described in PGGAN. |
|
|
|
Paper: https://arxiv.org/pdf/1710.10196.pdf |
|
|
|
Official TensorFlow implementation: |
|
https://github.com/tkarras/progressive_growing_of_gans |
|
""" |
|
import os |
|
|
|
import numpy as np |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from huggingface_hub import PyTorchModelHubMixin, PYTORCH_WEIGHTS_NAME, hf_hub_download |
|
|
|
__all__ = ['PGGANGenerator'] |
|
|
|
|
|
_RESOLUTIONS_ALLOWED = [8, 16, 32, 64, 128, 256, 512, 1024] |
|
|
|
|
|
_INIT_RES = 4 |
|
|
|
|
|
_WSCALE_GAIN = np.sqrt(2.0) |
|
|
|
|
|
class PGGANGenerator(nn.Module, PyTorchModelHubMixin): |
|
"""Defines the generator network in PGGAN. |
|
|
|
NOTE: The synthesized images are with `RGB` channel order and pixel range |
|
[-1, 1]. |
|
|
|
Settings for the network: |
|
|
|
(1) resolution: The resolution of the output image. |
|
(2) z_space_dim: The dimension of the latent space, Z. (default: 512) |
|
(3) image_channels: Number of channels of the output image. (default: 3) |
|
(4) final_tanh: Whether to use `tanh` to control the final pixel range. |
|
(default: False) |
|
(5) label_size: Size of the additional label for conditional generation. |
|
(default: 0) |
|
(6) fused_scale: Whether to fused `upsample` and `conv2d` together, |
|
resulting in `conv2d_transpose`. (default: False) |
|
(7) use_wscale: Whether to use weight scaling. (default: True) |
|
(8) fmaps_base: Factor to control number of feature maps for each layer. |
|
(default: 16 << 10) |
|
(9) fmaps_max: Maximum number of feature maps in each layer. (default: 512) |
|
""" |
|
|
|
def __init__(self, |
|
resolution, |
|
z_space_dim=512, |
|
image_channels=3, |
|
final_tanh=False, |
|
label_size=0, |
|
fused_scale=False, |
|
use_wscale=True, |
|
fmaps_base=16 << 10, |
|
fmaps_max=512, |
|
**kwargs): |
|
"""Initializes with basic settings. |
|
|
|
Raises: |
|
ValueError: If the `resolution` is not supported. |
|
""" |
|
super().__init__() |
|
|
|
if resolution not in _RESOLUTIONS_ALLOWED: |
|
raise ValueError(f'Invalid resolution: `{resolution}`!\n' |
|
f'Resolutions allowed: {_RESOLUTIONS_ALLOWED}.') |
|
|
|
self.init_res = _INIT_RES |
|
self.init_res_log2 = int(np.log2(self.init_res)) |
|
self.resolution = resolution |
|
self.final_res_log2 = int(np.log2(self.resolution)) |
|
self.z_space_dim = z_space_dim |
|
self.image_channels = image_channels |
|
self.final_tanh = final_tanh |
|
self.label_size = label_size |
|
self.fused_scale = fused_scale |
|
self.use_wscale = use_wscale |
|
self.fmaps_base = fmaps_base |
|
self.fmaps_max = fmaps_max |
|
|
|
self.config = kwargs.pop("config", None) |
|
|
|
|
|
self.num_layers = (self.final_res_log2 - self.init_res_log2 + 1) * 2 |
|
|
|
|
|
self.register_buffer('lod', torch.zeros(())) |
|
self.pth_to_tf_var_mapping = {'lod': 'lod'} |
|
|
|
for res_log2 in range(self.init_res_log2, self.final_res_log2 + 1): |
|
res = 2 ** res_log2 |
|
block_idx = res_log2 - self.init_res_log2 |
|
|
|
|
|
if res == self.init_res: |
|
self.add_module( |
|
f'layer{2 * block_idx}', |
|
ConvBlock(in_channels=self.z_space_dim + self.label_size, |
|
out_channels=self.get_nf(res), |
|
kernel_size=self.init_res, |
|
padding=self.init_res - 1, |
|
use_wscale=self.use_wscale)) |
|
tf_layer_name = 'Dense' |
|
else: |
|
self.add_module( |
|
f'layer{2 * block_idx}', |
|
ConvBlock(in_channels=self.get_nf(res // 2), |
|
out_channels=self.get_nf(res), |
|
upsample=True, |
|
fused_scale=self.fused_scale, |
|
use_wscale=self.use_wscale)) |
|
tf_layer_name = 'Conv0_up' if self.fused_scale else 'Conv0' |
|
self.pth_to_tf_var_mapping[f'layer{2 * block_idx}.weight'] = ( |
|
f'{res}x{res}/{tf_layer_name}/weight') |
|
self.pth_to_tf_var_mapping[f'layer{2 * block_idx}.bias'] = ( |
|
f'{res}x{res}/{tf_layer_name}/bias') |
|
|
|
|
|
self.add_module( |
|
f'layer{2 * block_idx + 1}', |
|
ConvBlock(in_channels=self.get_nf(res), |
|
out_channels=self.get_nf(res), |
|
use_wscale=self.use_wscale)) |
|
tf_layer_name = 'Conv' if res == self.init_res else 'Conv1' |
|
self.pth_to_tf_var_mapping[f'layer{2 * block_idx + 1}.weight'] = ( |
|
f'{res}x{res}/{tf_layer_name}/weight') |
|
self.pth_to_tf_var_mapping[f'layer{2 * block_idx + 1}.bias'] = ( |
|
f'{res}x{res}/{tf_layer_name}/bias') |
|
|
|
|
|
self.add_module( |
|
f'output{block_idx}', |
|
ConvBlock(in_channels=self.get_nf(res), |
|
out_channels=self.image_channels, |
|
kernel_size=1, |
|
padding=0, |
|
use_wscale=self.use_wscale, |
|
wscale_gain=1.0, |
|
activation_type='linear')) |
|
self.pth_to_tf_var_mapping[f'output{block_idx}.weight'] = ( |
|
f'ToRGB_lod{self.final_res_log2 - res_log2}/weight') |
|
self.pth_to_tf_var_mapping[f'output{block_idx}.bias'] = ( |
|
f'ToRGB_lod{self.final_res_log2 - res_log2}/bias') |
|
|
|
self.upsample = UpsamplingLayer() |
|
self.final_activate = nn.Tanh() if self.final_tanh else nn.Identity() |
|
|
|
def get_nf(self, res): |
|
"""Gets number of feature maps according to current resolution.""" |
|
return min(self.fmaps_base // res, self.fmaps_max) |
|
|
|
def forward(self, z, label=None, lod=None, **_unused_kwargs): |
|
if z.ndim != 2 or z.shape[1] != self.z_space_dim: |
|
raise ValueError(f'Input latent code should be with shape ' |
|
f'[batch_size, latent_dim], where ' |
|
f'`latent_dim` equals to {self.z_space_dim}!\n' |
|
f'But `{z.shape}` is received!') |
|
z = self.layer0.pixel_norm(z) |
|
if self.label_size: |
|
if label is None: |
|
raise ValueError(f'Model requires an additional label ' |
|
f'(with size {self.label_size}) as input, ' |
|
f'but no label is received!') |
|
if label.ndim != 2 or label.shape != (z.shape[0], self.label_size): |
|
raise ValueError(f'Input label should be with shape ' |
|
f'[batch_size, label_size], where ' |
|
f'`batch_size` equals to that of ' |
|
f'latent codes ({z.shape[0]}) and ' |
|
f'`label_size` equals to {self.label_size}!\n' |
|
f'But `{label.shape}` is received!') |
|
z = torch.cat((z, label), dim=1) |
|
|
|
lod = self.lod.cpu().tolist() if lod is None else lod |
|
if lod + self.init_res_log2 > self.final_res_log2: |
|
raise ValueError(f'Maximum level-of-detail (lod) is ' |
|
f'{self.final_res_log2 - self.init_res_log2}, ' |
|
f'but `{lod}` is received!') |
|
|
|
x = z.view(z.shape[0], self.z_space_dim + self.label_size, 1, 1) |
|
for res_log2 in range(self.init_res_log2, self.final_res_log2 + 1): |
|
current_lod = self.final_res_log2 - res_log2 |
|
if lod < current_lod + 1: |
|
block_idx = res_log2 - self.init_res_log2 |
|
x = self.__getattr__(f'layer{2 * block_idx}')(x) |
|
x = self.__getattr__(f'layer{2 * block_idx + 1}')(x) |
|
if current_lod - 1 < lod <= current_lod: |
|
image = self.__getattr__(f'output{block_idx}')(x) |
|
elif current_lod < lod < current_lod + 1: |
|
alpha = np.ceil(lod) - lod |
|
image = (self.__getattr__(f'output{block_idx}')(x) * alpha + |
|
self.upsample(image) * (1 - alpha)) |
|
elif lod >= current_lod + 1: |
|
image = self.upsample(image) |
|
image = self.final_activate(image) |
|
|
|
results = { |
|
'z': z, |
|
'label': label, |
|
'image': image, |
|
} |
|
return results |
|
|
|
@classmethod |
|
def _from_pretrained( |
|
cls, |
|
model_id, |
|
revision, |
|
cache_dir, |
|
force_download, |
|
proxies, |
|
resume_download, |
|
local_files_only, |
|
use_auth_token, |
|
map_location="cpu", |
|
strict=False, |
|
**model_kwargs, |
|
): |
|
""" |
|
Overwrite this method in case you wish to initialize your model in a |
|
different way. |
|
""" |
|
map_location = torch.device(map_location) |
|
|
|
if os.path.isdir(model_id): |
|
print("Loading weights from local directory") |
|
model_file = os.path.join(model_id, PYTORCH_WEIGHTS_NAME) |
|
else: |
|
model_file = hf_hub_download( |
|
repo_id=model_id, |
|
filename=PYTORCH_WEIGHTS_NAME, |
|
revision=revision, |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
proxies=proxies, |
|
resume_download=resume_download, |
|
use_auth_token=use_auth_token, |
|
local_files_only=local_files_only, |
|
) |
|
|
|
pretrained = torch.load(model_file, map_location=map_location) |
|
return pretrained |
|
|
|
|
|
class PixelNormLayer(nn.Module): |
|
"""Implements pixel-wise feature vector normalization layer.""" |
|
|
|
def __init__(self, epsilon=1e-8): |
|
super().__init__() |
|
self.eps = epsilon |
|
|
|
def forward(self, x): |
|
norm = torch.sqrt(torch.mean(x ** 2, dim=1, keepdim=True) + self.eps) |
|
return x / norm |
|
|
|
|
|
class UpsamplingLayer(nn.Module): |
|
"""Implements the upsampling layer. |
|
|
|
Basically, this layer can be used to upsample feature maps with nearest |
|
neighbor interpolation. |
|
""" |
|
|
|
def __init__(self, scale_factor=2): |
|
super().__init__() |
|
self.scale_factor = scale_factor |
|
|
|
def forward(self, x): |
|
if self.scale_factor <= 1: |
|
return x |
|
return F.interpolate(x, scale_factor=self.scale_factor, mode='nearest') |
|
|
|
|
|
class ConvBlock(nn.Module): |
|
"""Implements the convolutional block. |
|
|
|
Basically, this block executes pixel-wise normalization layer, upsampling |
|
layer (if needed), convolutional layer, and activation layer in sequence. |
|
""" |
|
|
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
add_bias=True, |
|
upsample=False, |
|
fused_scale=False, |
|
use_wscale=True, |
|
wscale_gain=_WSCALE_GAIN, |
|
activation_type='lrelu'): |
|
"""Initializes with block settings. |
|
|
|
Args: |
|
in_channels: Number of channels of the input tensor. |
|
out_channels: Number of channels of the output tensor. |
|
kernel_size: Size of the convolutional kernels. (default: 3) |
|
stride: Stride parameter for convolution operation. (default: 1) |
|
padding: Padding parameter for convolution operation. (default: 1) |
|
add_bias: Whether to add bias onto the convolutional result. |
|
(default: True) |
|
upsample: Whether to upsample the input tensor before convolution. |
|
(default: False) |
|
fused_scale: Whether to fused `upsample` and `conv2d` together, |
|
resulting in `conv2d_transpose`. (default: False) |
|
use_wscale: Whether to use weight scaling. (default: True) |
|
wscale_gain: Gain factor for weight scaling. (default: _WSCALE_GAIN) |
|
activation_type: Type of activation. Support `linear` and `lrelu`. |
|
(default: `lrelu`) |
|
|
|
Raises: |
|
NotImplementedError: If the `activation_type` is not supported. |
|
""" |
|
super().__init__() |
|
|
|
self.pixel_norm = PixelNormLayer() |
|
|
|
if upsample and not fused_scale: |
|
self.upsample = UpsamplingLayer() |
|
else: |
|
self.upsample = nn.Identity() |
|
|
|
if upsample and fused_scale: |
|
self.use_conv2d_transpose = True |
|
weight_shape = (in_channels, out_channels, kernel_size, kernel_size) |
|
self.stride = 2 |
|
self.padding = 1 |
|
else: |
|
self.use_conv2d_transpose = False |
|
weight_shape = (out_channels, in_channels, kernel_size, kernel_size) |
|
self.stride = stride |
|
self.padding = padding |
|
|
|
fan_in = kernel_size * kernel_size * in_channels |
|
wscale = wscale_gain / np.sqrt(fan_in) |
|
if use_wscale: |
|
self.weight = nn.Parameter(torch.randn(*weight_shape)) |
|
self.wscale = wscale |
|
else: |
|
self.weight = nn.Parameter(torch.randn(*weight_shape) * wscale) |
|
self.wscale = 1.0 |
|
|
|
if add_bias: |
|
self.bias = nn.Parameter(torch.zeros(out_channels)) |
|
else: |
|
self.bias = None |
|
|
|
if activation_type == 'linear': |
|
self.activate = nn.Identity() |
|
elif activation_type == 'lrelu': |
|
self.activate = nn.LeakyReLU(negative_slope=0.2, inplace=True) |
|
else: |
|
raise NotImplementedError(f'Not implemented activation function: ' |
|
f'`{activation_type}`!') |
|
|
|
def forward(self, x): |
|
x = self.pixel_norm(x) |
|
x = self.upsample(x) |
|
weight = self.weight * self.wscale |
|
if self.use_conv2d_transpose: |
|
weight = F.pad(weight, (1, 1, 1, 1, 0, 0, 0, 0), 'constant', 0.0) |
|
weight = (weight[:, :, 1:, 1:] + weight[:, :, :-1, 1:] + |
|
weight[:, :, 1:, :-1] + weight[:, :, :-1, :-1]) |
|
x = F.conv_transpose2d(x, |
|
weight=weight, |
|
bias=self.bias, |
|
stride=self.stride, |
|
padding=self.padding) |
|
else: |
|
x = F.conv2d(x, |
|
weight=weight, |
|
bias=self.bias, |
|
stride=self.stride, |
|
padding=self.padding) |
|
x = self.activate(x) |
|
return x |
|
|