import torch from typing import Tuple, List, Union, Optional import numpy as np def generate_beam(model, tokenizer, beam_size: int = 5, prompt=None, embed=None, entry_length=67, temperature=1., stop_token: str = '.'): model.eval() stop_token_index = tokenizer.encode(stop_token)[0] tokens = None scores = None device = next(model.parameters()).device seq_lengths = torch.ones(beam_size, device=device) is_stopped = torch.zeros(beam_size, device=device, dtype=torch.bool) with torch.no_grad(): if embed is not None: generated = embed else: if tokens is None: tokens = torch.tensor(tokenizer.encode(prompt)) tokens = tokens.unsqueeze(0).to(device) generated = model.gpt.transformer.wte(tokens) for i in range(entry_length): outputs = model.gpt(inputs_embeds=generated) logits = outputs.logits logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) logits = logits.softmax(-1).log() if scores is None: scores, next_tokens = logits.topk(beam_size, -1) generated = generated.expand(beam_size, *generated.shape[1:]) next_tokens, scores = next_tokens.permute(1, 0), scores.squeeze(0) if tokens is None: tokens = next_tokens else: tokens = tokens.expand(beam_size, *tokens.shape[1:]) tokens = torch.cat((tokens, next_tokens), dim=1) else: logits[is_stopped] = -float(np.inf) logits[is_stopped, 0] = 0 scores_sum = scores[:, None] + logits seq_lengths[~is_stopped] += 1 scores_sum_average = scores_sum / seq_lengths[:, None] scores_sum_average, next_tokens = scores_sum_average.view(-1).topk(beam_size, -1) next_tokens_source = next_tokens // scores_sum.shape[1] seq_lengths = seq_lengths[next_tokens_source] next_tokens = next_tokens % scores_sum.shape[1] next_tokens = next_tokens.unsqueeze(1) tokens = tokens[next_tokens_source] tokens = torch.cat((tokens, next_tokens), dim=1) generated = generated[next_tokens_source] scores = scores_sum_average * seq_lengths is_stopped = is_stopped[next_tokens_source] next_token_embed = model.gpt.transformer.wte(next_tokens.squeeze()).view(generated.shape[0], 1, -1) generated = torch.cat((generated, next_token_embed), dim=1) is_stopped = is_stopped + next_tokens.eq(stop_token_index).squeeze() if is_stopped.all(): break scores = scores / seq_lengths output_list = tokens.cpu().numpy() output_texts = [tokenizer.decode(output[:int(length)]) for output, length in zip(output_list, seq_lengths)] order = scores.argsort(descending=True) output_texts = [output_texts[i] for i in order] return output_texts def generate2( model, tokenizer, tokens=None, prompt=None, embed=None, entry_count=1, entry_length=67, # maximum number of words top_p=0.8, temperature=1., stop_token: str = '.', ): model.eval() generated_num = 0 generated_list = [] stop_token_index = tokenizer.encode(stop_token)[0] filter_value = -float("Inf") device = next(model.parameters()).device with torch.no_grad(): for entry_idx in trange(entry_count): if embed is not None: generated = embed else: if tokens is None: tokens = torch.tensor(tokenizer.encode(prompt)) tokens = tokens.unsqueeze(0).to(device) generated = model.gpt.transformer.wte(tokens) for i in range(entry_length): outputs = model.gpt(inputs_embeds=generated) logits = outputs.logits logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) sorted_logits, sorted_indices = torch.sort(logits, descending=True) cumulative_probs = torch.cumsum(nnf.softmax(sorted_logits, dim=-1), dim=-1) sorted_indices_to_remove = cumulative_probs > top_p sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[ ..., :-1 ].clone() sorted_indices_to_remove[..., 0] = 0 indices_to_remove = sorted_indices[sorted_indices_to_remove] logits[:, indices_to_remove] = filter_value next_token = torch.argmax(logits, -1).unsqueeze(0) next_token_embed = model.gpt.transformer.wte(next_token) if tokens is None: tokens = next_token else: tokens = torch.cat((tokens, next_token), dim=1) generated = torch.cat((generated, next_token_embed), dim=1) if stop_token_index == next_token.item(): break output_list = list(tokens.squeeze().cpu().numpy()) output_text = tokenizer.decode(output_list) generated_list.append(output_text) return generated_list[0]