Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 13,541 Bytes
834bcf3 e8ea372 a101d9b e8ea372 8964ef4 e082b4b 8964ef4 a101d9b a4b71bb a101d9b 8964ef4 a101d9b 67008b9 e8ea372 a4b71bb 8964ef4 67008b9 a101d9b e8ea372 03258aa 8964ef4 a101d9b e8ea372 8964ef4 a4b71bb 03258aa 42e31b9 03258aa a4b71bb 8964ef4 cf41b19 a4b71bb e8ea372 8964ef4 650a247 03258aa 650a247 03258aa 650a247 b648312 650a247 a101d9b 03258aa a101d9b 03258aa a101d9b 42e31b9 03258aa a101d9b 03258aa e082b4b 03258aa e082b4b 8964ef4 03258aa a101d9b 8964ef4 a101d9b 8964ef4 03258aa 8964ef4 a101d9b 42e31b9 03258aa e8ea372 42e31b9 03258aa e8ea372 42e31b9 a101d9b 42e31b9 8964ef4 03258aa a101d9b 8964ef4 03258aa a101d9b 42e31b9 a101d9b 03258aa 42e31b9 a101d9b 6adeb37 a101d9b 8964ef4 d315723 dabf25e 42e31b9 8964ef4 dabf25e 8964ef4 42e31b9 03258aa 42e31b9 a101d9b 42e31b9 03258aa 42e31b9 03258aa 42e31b9 03258aa 42e31b9 03258aa 24ca8de 03258aa 42e31b9 b648312 42e31b9 b648312 42e31b9 03258aa dabf25e 03258aa 650a247 03258aa f69954f 5f2948a f69954f 03258aa 5f2948a 650a247 03258aa 650a247 03258aa e082b4b 03258aa 650a247 03258aa 650a247 03258aa 650a247 dabf25e 03258aa dabf25e 03258aa 42e31b9 834bcf3 14a7251 d315723 67008b9 dff981d 14a7251 a101d9b a4b71bb e8ea372 fe95fdf 42e31b9 fe95fdf e8ea372 a101d9b 834bcf3 0708a05 03258aa a101d9b 834bcf3 8e9514a 834bcf3 dabf25e 8e9514a 0708a05 8e9514a 0708a05 834bcf3 a101d9b 03258aa 235f820 03258aa a101d9b 03258aa a101d9b dabf25e 03258aa 06e8b3b 03258aa dabf25e 03258aa dabf25e a101d9b 03258aa a101d9b a4b71bb 67008b9 03258aa 67008b9 e082b4b 03258aa a101d9b 8964ef4 dabf25e 0cfd08a dabf25e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
from enum import Enum
import os
import re
import aiohttp
import requests
import json
import subprocess
import asyncio
from io import BytesIO
import uuid
import yaml
from math import ceil
from tqdm import tqdm
from pathlib import Path
from huggingface_hub import Repository
from PIL import Image, ImageOps
from fastapi import FastAPI, BackgroundTasks
from fastapi.responses import HTMLResponse
from fastapi_utils.tasks import repeat_every
from fastapi.middleware.cors import CORSMiddleware
import boto3
from datetime import datetime
from db import Database
AWS_ACCESS_KEY_ID = os.getenv("MY_AWS_ACCESS_KEY_ID")
AWS_SECRET_KEY = os.getenv("MY_AWS_SECRET_KEY")
AWS_S3_BUCKET_NAME = os.getenv("MY_AWS_S3_BUCKET_NAME")
HF_TOKEN = os.environ.get("HF_TOKEN")
S3_DATA_FOLDER = Path("sd-multiplayer-data")
DB_FOLDER = Path("diffusers-gallery-data")
CLASSIFIER_URL = (
"https://radames-aesthetic-style-nsfw-classifier.hf.space/run/inference"
)
ASSETS_URL = "https://d26smi9133w0oo.cloudfront.net/diffusers-gallery/"
s3 = boto3.client(
service_name="s3",
aws_access_key_id=AWS_ACCESS_KEY_ID,
aws_secret_access_key=AWS_SECRET_KEY,
)
repo = Repository(
local_dir=DB_FOLDER,
repo_type="dataset",
clone_from="huggingface-projects/diffusers-gallery-data",
use_auth_token=True,
)
repo.git_pull()
database = Database(DB_FOLDER)
async def upload_resize_image_url(session, image_url):
print(f"Uploading image {image_url}")
try:
async with session.get(image_url) as response:
if response.status == 200 and (
response.headers["content-type"].startswith("image")
or response.headers["content-type"].startswith("application")
):
image = Image.open(BytesIO(await response.read())).convert("RGB")
# resize image proportional
image = ImageOps.fit(image, (400, 400), Image.LANCZOS)
image_bytes = BytesIO()
image.save(image_bytes, format="JPEG")
image_bytes.seek(0)
fname = f"{uuid.uuid4()}.jpg"
s3.upload_fileobj(
Fileobj=image_bytes,
Bucket=AWS_S3_BUCKET_NAME,
Key="diffusers-gallery/" + fname,
ExtraArgs={
"ContentType": "image/jpeg",
"CacheControl": "max-age=31536000",
},
)
return fname
except Exception as e:
print(f"Error uploading image {image_url}: {e}")
return None
def fetch_models(page=0):
response = requests.get(
f"https://huggingface.co/models-json?pipeline_tag=text-to-image&p={page}"
)
data = response.json()
return {
"models": [model for model in data["models"] if not model["private"]],
"numItemsPerPage": data["numItemsPerPage"],
"numTotalItems": data["numTotalItems"],
"pageIndex": data["pageIndex"],
}
def fetch_model_card(model_id):
response = requests.get(f"https://huggingface.co/{model_id}/raw/main/README.md")
return response.text
REGEX = re.compile(r'---(.*?)---', re.DOTALL)
def get_yaml_data(text_content):
matches = REGEX.findall(text_content)
yaml_block = matches[0].strip() if matches else None
if yaml_block:
try:
data_dict = yaml.safe_load(yaml_block)
return data_dict
except yaml.YAMLError as exc:
print(exc)
return {}
async def find_image_in_model_card(text):
image_regex = re.compile(r"https?://\S+(?:png|jpg|jpeg|webp)")
urls = re.findall(image_regex, text)
if not urls:
return []
async with aiohttp.ClientSession() as session:
tasks = [
asyncio.ensure_future(upload_resize_image_url(session, image_url))
for image_url in urls[0:3]
]
return await asyncio.gather(*tasks)
def run_classifier(images):
images = [i for i in images if i is not None]
if len(images) > 0:
# classifying only the first image
images_urls = [ASSETS_URL + images[0]]
response = requests.post(
CLASSIFIER_URL,
json={
"data": [
{"urls": images_urls}, # json urls: list of images urls
False, # enable/disable gallery image output
None, # single image input
None, # files input
]
},
).json()
# data response is array data:[[{img0}, {img1}, {img2}...], Label, Gallery],
class_data = response["data"][0][0]
class_data_parsed = {row["label"]: round(row["score"], 3) for row in class_data}
# update row data with classificator data
return class_data_parsed
else:
return {}
async def get_all_new_models():
initial = fetch_models(0)
num_pages = ceil(initial["numTotalItems"] / initial["numItemsPerPage"])
print(
f"Total items: {initial['numTotalItems']} - Items per page: {initial['numItemsPerPage']}"
)
print(f"Found {num_pages} pages")
# fetch all models
new_models = []
for page in tqdm(range(0, num_pages)):
print(f"Fetching page {page} of {num_pages}")
page_models = fetch_models(page)
new_models += page_models["models"]
return new_models
async def sync_data():
print("Fetching models")
repo.git_pull()
all_models = await get_all_new_models()
print(f"Found {len(all_models)} models")
# save list of all models for ids
with open(DB_FOLDER / "models.json", "w") as f:
json.dump(all_models, f)
# with open(DB_FOLDER / "models.json", "r") as f:
# new_models = json.load(f)
new_models_ids = [model["id"] for model in all_models]
# get existing models
with database.get_db() as db:
cursor = db.cursor()
cursor.execute("SELECT id FROM models")
existing_models = [row["id"] for row in cursor.fetchall()]
models_ids_to_add = list(set(new_models_ids) - set(existing_models))
# find all models id to add from new_models
models = [model for model in all_models if model["id"] in models_ids_to_add]
print(f"Found {len(models)} new models")
for model in tqdm(models):
model_id = model["id"]
print(f"\n\nFetching model {model_id}")
likes = model["likes"]
downloads = model["downloads"]
print("Fetching model card")
model_card = fetch_model_card(model_id)
print("Parsing model card")
model_card_data = get_yaml_data(model_card)
print("Finding images in model card")
images = await find_image_in_model_card(model_card)
classifier = run_classifier(images)
print(images, classifier)
# update model row with image and classifier data
with database.get_db() as db:
cursor = db.cursor()
cursor.execute(
"INSERT INTO models(id, data, likes, downloads) VALUES (?, ?, ?, ?)",
[
model_id,
json.dumps(
{
**model,
"meta": model_card_data,
"images": images,
"class": classifier,
}
),
likes,
downloads,
],
)
db.commit()
print("\n\n\n\nTry to update images again\n\n\n")
with database.get_db() as db:
cursor = db.cursor()
cursor.execute("SELECT * from models")
to_all_models = list(cursor.fetchall())
models_no_images = []
for model in to_all_models:
model_data = json.loads(model["data"])
images = model_data["images"]
filtered_images = [x for x in images if x is not None]
if len(filtered_images) == 0:
models_no_images.append(model)
for model in tqdm(models_no_images):
model_id = model["id"]
model_data = json.loads(model["data"])
print(f"\n\nFetching model {model_id}")
model_card = fetch_model_card(model_id)
print("Parsing model card")
model_card_data = get_yaml_data(model_card)
print("Finding images in model card")
images = await find_image_in_model_card(model_card)
classifier = run_classifier(images)
model_data["images"] = images
model_data["class"] = classifier
model_data["meta"] = model_card_data
# update model row with image and classifier data
with database.get_db() as db:
cursor = db.cursor()
cursor.execute(
"UPDATE models SET data = ? WHERE id = ?",
[json.dumps(model_data), model_id],
)
db.commit()
print("Update likes and downloads")
for model in tqdm(all_models):
model_id = model["id"]
likes = model["likes"]
downloads = model["downloads"]
with database.get_db() as db:
cursor = db.cursor()
cursor.execute(
"UPDATE models SET likes = ?, downloads = ? WHERE id = ?",
[likes, downloads, model_id],
)
db.commit()
print("Updating DB repository")
time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
cmd = f"git add . && git commit --amend -m 'update at {time}' && git push --force"
print(cmd)
subprocess.Popen(cmd, cwd=DB_FOLDER, shell=True)
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# @ app.get("/sync")
# async def sync(background_tasks: BackgroundTasks):
# await sync_data()
# return "Synced data to huggingface datasets"
MAX_PAGE_SIZE = 30
class Sort(str, Enum):
trending = "trending"
recent = "recent"
likes = "likes"
class Style(str, Enum):
all = "all"
anime = "anime"
s3D = "3d"
realistic = "realistic"
nsfw = "nsfw"
@app.get("/api/models")
def get_page(
page: int = 1, sort: Sort = Sort.trending, style: Style = Style.all, tag: str = None
):
page = page if page > 0 else 1
if sort == Sort.trending:
sort_query = "likes / MYPOWER((JULIANDAY('now') - JULIANDAY(datetime(json_extract(data, '$.lastModified')))) + 2, 2) DESC"
elif sort == Sort.recent:
sort_query = "datetime(json_extract(data, '$.lastModified')) DESC"
elif sort == Sort.likes:
sort_query = "likes DESC"
if style == Style.all:
style_query = "isNFSW = false"
elif style == Style.anime:
style_query = "json_extract(data, '$.class.anime') > 0.1 AND isNFSW = false"
elif style == Style.s3D:
style_query = "json_extract(data, '$.class.3d') > 0.1 AND isNFSW = false"
elif style == Style.realistic:
style_query = "json_extract(data, '$.class.real_life') > 0.1 AND isNFSW = false"
elif style == Style.nsfw:
style_query = "isNFSW = true"
with database.get_db() as db:
cursor = db.cursor()
cursor.execute(
f"""
SELECT *,
COUNT(*) OVER() AS total,
isNFSW
FROM (
SELECT *,
json_extract(data, '$.class.explicit') > 0.3 OR json_extract(data, '$.class.suggestive') > 0.3 AS isNFSW
FROM models
) AS subquery
WHERE (? IS NULL AND likes > 3 OR ? IS NOT NULL)
AND {style_query}
AND (? IS NULL OR EXISTS (
SELECT 1
FROM json_each(json_extract(data, '$.meta.tags'))
WHERE json_each.value = ?
))
ORDER BY {sort_query}
LIMIT {MAX_PAGE_SIZE} OFFSET {(page - 1) * MAX_PAGE_SIZE};
""",
(tag, tag, tag, tag),
)
results = cursor.fetchall()
total = results[0]["total"] if results else 0
total_pages = (total + MAX_PAGE_SIZE - 1) // MAX_PAGE_SIZE
models_data = []
for result in results:
data = json.loads(result["data"])
images = data["images"]
filtered_images = [x for x in images if x is not None]
# clean nulls
data["images"] = filtered_images
# update downloads and likes from db table
data["downloads"] = result["downloads"]
data["likes"] = result["likes"]
data["isNFSW"] = bool(result["isNFSW"])
models_data.append(data)
return {"models": models_data, "totalPages": total_pages}
@app.get("/")
def read_root():
# return html page from string
return HTMLResponse(
"""
<p>Just a bot to sync data from diffusers gallery please go to
<a href="https://huggingface.co/spaces/huggingface-projects/diffusers-gallery" target="_blank" rel="noopener noreferrer">https://huggingface.co/spaces/huggingface-projects/diffusers-gallery</a>
</p>"""
)
@app.on_event("startup")
@repeat_every(seconds=60 * 60 * 6, wait_first=False)
async def repeat_sync():
await sync_data()
return "Synced data to huggingface datasets"
|