|
from PIL import Image |
|
import torch |
|
from transformers.agents.tools import Tool |
|
from transformers.utils import ( |
|
is_accelerate_available, |
|
is_vision_available, |
|
) |
|
|
|
from diffusers import DiffusionPipeline |
|
if is_accelerate_available(): |
|
from accelerate import PartialState |
|
|
|
IMAGE_TRANSFORMATION_DESCRIPTION = ( |
|
"This is a tool that transforms an image according to a prompt and returns the " |
|
"modified image." |
|
) |
|
|
|
|
|
class ImageTransformationTool(Tool): |
|
name = "image_transformation" |
|
default_stable_diffusion_checkpoint = "timbrooks/instruct-pix2pix" |
|
description = IMAGE_TRANSFORMATION_DESCRIPTION |
|
inputs = { |
|
'image': {"type": Image.Image, "description": "the image to transform"}, |
|
'prompt': {"type": str, "description": "the prompt to use to change the image"} |
|
} |
|
output_type = Image.Image |
|
|
|
def __init__(self, device=None, controlnet=None, stable_diffusion=None, **hub_kwargs) -> None: |
|
if not is_accelerate_available(): |
|
raise ImportError("Accelerate should be installed in order to use tools.") |
|
if not is_vision_available(): |
|
raise ImportError("Pillow should be installed in order to use the StableDiffusionTool.") |
|
|
|
super().__init__() |
|
|
|
self.stable_diffusion = self.default_stable_diffusion_checkpoint |
|
|
|
self.device = device |
|
self.hub_kwargs = hub_kwargs |
|
|
|
def setup(self): |
|
if self.device is None: |
|
self.device = PartialState().default_device |
|
|
|
self.pipeline = DiffusionPipeline.from_pretrained(self.stable_diffusion) |
|
|
|
self.pipeline.to(self.device) |
|
if self.device.type == "cuda": |
|
self.pipeline.to(torch_dtype=torch.float16) |
|
|
|
self.is_initialized = True |
|
|
|
def __call__(self, image, prompt): |
|
if not self.is_initialized: |
|
self.setup() |
|
|
|
negative_prompt = "low quality, bad quality, deformed, low resolution" |
|
added_prompt = " , highest quality, highly realistic, very high resolution" |
|
|
|
return self.pipeline( |
|
prompt + added_prompt, |
|
image, |
|
negative_prompt=negative_prompt, |
|
num_inference_steps=50, |
|
).images[0] |