import streamlit as st from persist import persist, load_widget_state from pathlib import Path from middleMan import apply_view,writingPrompt global variable_output def main(): cs_body() def cs_body(): #stateVariable = 'Model_Eval' #help_text ='Detail the Evaluation Results for this model' #col1.header('Model Evaluation') st.markdown('# Evaluation') st.text_area(" This section describes the evaluation protocols and provides the results. ",help="Detail the Evaluation Results for this model") st.markdown('## Testing Data, Factors & Metrics:') left, right = st.columns([2,4]) #st.markdown('### Model Description') with left: st.write("\n") st.write("\n") st.markdown('#### Testing Data:') st.write("\n") st.write("\n") st.write("\n") st.write("\n") st.write("\n") st.write("\n") #st.write("\n") st.markdown('#### Factors:') st.write("\n") st.write("\n") st.write("\n") st.write("\n") st.write("\n") st.write("\n") st.markdown('#### Metrics:') st.write("\n") st.write("\n") st.write("\n") st.write("\n") st.write("\n") st.markdown('#### Results:') with right: #soutput_jinja = parse_into_jinja_markdown() st.text_area("", key=persist("Testing_Data")) #st.write("\n") st.text_area("",help="These are the things the evaluation is disaggregating by, e.g., subpopulations or domains.",key=persist("Factors")) st.text_area("", help=" These are the evaluation metrics being used, ideally with a description of why.", key=persist("Metrics")) st.text_area("", key=persist("Model_Results")) if __name__ == '__main__': load_widget_state() main()