bloom_demo / app.py
thomwolf's picture
thomwolf HF staff
Update app.py
6c95228
raw
history blame
4.15 kB
import gradio as gr
import re
import requests
import json
import os
title = "BLOOM"
description = """Gradio Demo for BLOOM. To use it, simply add your text, or click one of the examples to load them.
Tips:
- Do NOT talk to BLOOM as an entity, it's not a chatbot but a webpage/blog/article completion model.
- For the best results: MIMIC a few sentences of a webpage similar to the content you want to generate.
Start a paragraph as if YOU were writing a blog, webpage, math post, coding article and BLOOM will generate a coherent follow-up. Longer prompts usually give more interesting results.
Options:
- sampling: imaginative completions (may be not super accurate e.g. math/history)
- greedy: accurate completions (may be more boring or have repetitions)
"""
API_URL = "https://hfbloom.ngrok.io/generate"
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
hf_writer = gr.HuggingFaceDatasetSaver(HF_API_TOKEN, "huggingface/bloom_internal_prompts", organization="huggingface")
examples = [
['A "whatpu" is a small, furry animal native to Tanzania. An example of a sentence that uses the word whatpu is: We were traveling in Africa and we saw these very cute whatpus. To do a "farduddle" means to jump up and down really fast. An example of a sentence that uses the word farduddle is:', 32, "Sample", "Sample 1"],
['A poem about the beauty of science by Alfred Edgar Brittle\nTitle: The Magic Craft\nIn the old times', 50, "Sample", "Sample 1"],
['استخراج العدد العاملي في لغة بايثون:', 30, "Greedy", "Sample 1"],
["Pour déguster un ortolan, il faut tout d'abord", 32, "Sample", "Sample 1"],
['Traduce español de España a español de Argentina\nEl coche es rojo - el auto es rojo\nEl ordenador es nuevo - la computadora es nueva\nel boligrafo es negro -', 16, "Sample", "Sample 1"],
['Estos ejemplos quitan vocales de las palabras\nEjemplos:\nhola - hl\nmanzana - mnzn\npapas - pps\nalacran - lcrn\npapa -', 16, "Sample", "Sample 1"],
["Question: If I put cheese into the fridge, will it melt?\nAnswer:", 32, "Sample", "Sample 1"],
["Math exercise - answers:\n34+10=44\n54+20=", 16, "Greedy", "Sample 1"],
["Question: Where does the Greek Goddess Persephone spend half of the year when she is not with her mother?\nAnswer:", 24, "Greedy", "Sample 1"],
["spelling test answers.\nWhat are the letters in « language »?\nAnswer: l-a-n-g-u-a-g-e\nWhat are the letters in « Romanian »?\nAnswer:", 24, "Greedy", "Sample 1"],
]
def query(payload):
print(payload)
response = requests.request("POST", API_URL, json=payload)
print(response)
return json.loads(response.content.decode("utf-8"))
def inference(input_sentence, max_length, sample_or_greedy, seed=42):
if sample_or_greedy == "Sample":
parameters = {"max_new_tokens": max_length,
"top_p": 0.9,
"do_sample": True,
"seed": seed,
"early_stopping": False,
"length_penalty": 0.0,
"eos_token_id": None}
else:
parameters = {"max_new_tokens": max_length,
"do_sample": False,
"seed": seed,
"early_stopping": False,
"length_penalty": 0.0,
"eos_token_id": None}
payload = {"inputs": input_sentence,
"parameters": parameters}
data = query(
payload
)
print(data)
return data[0]["generated_text"]
gr.Interface(
inference,
[
gr.inputs.Textbox(label="Input"),
gr.inputs.Slider(1, 64, default=32, step=1, label="Tokens to generate"),
gr.inputs.Radio(["Sample", "Greedy"], label="Sample or greedy"),
gr.inputs.Radio(["Sample 1", "Sample 2", "Sample 3", "Sample 4", "Sample 5"], label="Sample other generations (only work in 'Sample' mode", type="index"),
],
gr.outputs.Textbox(label="Output"),
examples=examples,
# article=article,
title=title,
description=description,
flagging_callback=hf_writer,
allow_flagging=True,
).launch()