bloom_demo / app.py
osanseviero's picture
Update app.py
f3fece9
raw
history blame
2.25 kB
import gradio as gr
import re
import requests
import json
import os
title = "BLOOM"
description = "Gradio Demo for BLOOM. To use it, simply add your text, or click one of the examples to load them. Read more at the links below."
API_URL = "https://hfbloom.ngrok.io/generate"
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
hf_writer = gr.HuggingFaceDatasetSaver(HF_API_TOKEN, "huggingface/bloom_internal_prompts", organization="huggingface")
examples = [
['A "whatpu" is a small, furry animal native to Tanzania. An example of a sentence that uses the word whatpu is: We were traveling in Africa and we saw these very cute whatpus. To do a "farduddle" means to jump up and down really fast. An example of a sentence that uses the word farduddle is:']
]
def safe_text(text):
text = text.replace('%', '\\%25')
text = text.replace('#', '\\%23')
text = text.replace('+', '\\%2B')
text = text.replace('*', '\\%2A')
text = text.replace('&', '\\%26')
text = re.sub(r"([$_*\[\]()~`>\#\+\-=|\.!{}])", r"\\\1", text)
return f"<pre>{text}</pre>"
def query(payload):
response = requests.request("POST", API_URL, json=payload)
return json.loads(response.content.decode("utf-8"))
def inference(input_sentence, max_length, temperature, greedy_decoding, top_k, top_p, seed=42):
top_k = None if top_k == 0 else top_k
payload = {"inputs": input_sentence,
"parameters": {"max_new_tokens": max_length, "top_k": top_k, "top_p": top_p, "temperature": temperature,
"do_sample": not greedy_decoding, "seed": seed}}
data = query(
payload
)
return data[0]['generated_text'][len(input_sentence):]
gr.Interface(
inference,
[
gr.inputs.Textbox(label="Input"),
gr.inputs.Slider(1, 64, default=8, label="Tokens to generate"),
gr.inputs.Slider(0, 64, default=0, label="Top K"),
gr.inputs.Slider(0.0, 10, default=0.9, step=0.05, label="Top P"),
gr.inputs.Checkbox(False, label="Greedy decoding"),
],
gr.outputs.Textbox(label="Output"),
examples=examples,
# article=article,
title=title,
description=description,
flagging_options=["save"],
flagging_callback=hf_writer
).launch()