Spaces:
Build error
Build error
File size: 21,163 Bytes
9b51db9 e0ada71 9b51db9 ee64ff9 9b51db9 55a6a06 9b51db9 66693d5 9b51db9 e1f2cc3 9b51db9 e1f2cc3 9b51db9 ec99b37 9b51db9 e1f2cc3 9b51db9 e1f2cc3 9b51db9 e1f2cc3 9b51db9 d3c28ec ec99b37 9b51db9 d3c28ec ec99b37 9b51db9 4b53042 9b51db9 4b53042 9b51db9 335424f 9b51db9 85cf91c 9b51db9 0b7eeeb 9b51db9 85cf91c 9b51db9 85cf91c 9b51db9 7c5239c ec99b37 9b51db9 e1f2cc3 9b51db9 7c5239c 9b51db9 ca9634c 9b51db9 14e5c2a 9b51db9 a2ae370 9b51db9 a2ae370 9b51db9 a2ae370 9b51db9 a2ae370 9b51db9 14e5c2a 9b51db9 9f53328 9b51db9 9f53328 9b51db9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import statistics
import pandas as pd
import seaborn as sns
import streamlit as st
from st_aggrid import AgGrid, GridOptionsBuilder
from .dataset_utils import HF_DESC_FIELD, HF_FEATURE_FIELD, HF_LABEL_FIELD
st.set_option('deprecation.showPyplotGlobalUse', False)
def sidebar_header():
st.sidebar.markdown(
"""
This demo showcases the [dataset metrics as we develop them](https://github.com/huggingface/data-measurements-tool).
Right now this has:
- dynamic loading of datasets in the lib
- fetching config and info without downloading the dataset
- propose the list of candidate text and label features to select
We are still working on:
- implementing all the current tools
""",
unsafe_allow_html=True,
)
def sidebar_selection(ds_name_to_dict, column_id):
ds_names = list(ds_name_to_dict.keys())
with st.sidebar.expander(f"Choose dataset and field {column_id}", expanded=True):
# choose a dataset to analyze
ds_name = st.selectbox(
f"Choose dataset to explore{column_id}:",
ds_names,
index=ds_names.index("hate_speech18"),
)
# choose a config to analyze
ds_configs = ds_name_to_dict[ds_name]
if ds_name == "c4":
config_names = ['en','en.noblocklist','realnewslike']
else:
config_names = list(ds_configs.keys())
config_name = st.selectbox(
f"Choose configuration{column_id}:",
config_names,
index=0,
)
# choose a subset of num_examples
# TODO: Handling for multiple text features
ds_config = ds_configs[config_name]
text_features = ds_config[HF_FEATURE_FIELD]["string"]
# TODO @yacine: Explain what this is doing and why eg tp[0] could = "id"
text_field = st.selectbox(
f"Which text feature from the{column_id} dataset would you like to analyze?",
[("text",)]
if ds_name == "c4"
else [tp for tp in text_features if tp[0] != "id"],
)
# Choose a split and dataset size
avail_splits = list(ds_config["splits"].keys())
# 12.Nov note: Removing "test" because those should not be examined
# without discussion of pros and cons, which we haven't done yet.
if "test" in avail_splits:
avail_splits.remove("test")
split = st.selectbox(
f"Which split from the{column_id} dataset would you like to analyze?",
avail_splits,
index=0,
)
label_field, label_names = (
ds_name_to_dict[ds_name][config_name][HF_FEATURE_FIELD][HF_LABEL_FIELD][0]
if len(
ds_name_to_dict[ds_name][config_name][HF_FEATURE_FIELD][HF_LABEL_FIELD]
)
> 0
else ((), [])
)
return {
"dset_name": ds_name,
"dset_config": config_name,
"split_name": split,
"text_field": text_field,
"label_field": label_field,
"label_names": label_names,
}
def expander_header(dstats, ds_name_to_dict, column_id):
with st.expander(f"Dataset Description{column_id}"):
st.markdown(
ds_name_to_dict[dstats.dset_name][dstats.dset_config][HF_DESC_FIELD]
)
st.dataframe(dstats.dset_peek)
def expander_general_stats(dstats, column_id):
with st.expander(f"General Text Statistics{column_id}"):
st.caption(
"Use this widget to check whether the terms you see most represented"
" in the dataset make sense for the goals of the dataset."
)
st.markdown("There are {0} total words".format(str(dstats.total_words)))
st.markdown(
"There are {0} words after removing closed "
"class words".format(str(dstats.total_open_words))
)
st.markdown(
"The most common "
"[open class words](https://dictionary.apa.org/open-class-words) "
"and their counts are: "
)
st.dataframe(dstats.sorted_top_vocab_df)
st.markdown(
"There are {0} missing values in the dataset.".format(
str(dstats.text_nan_count)
)
)
if dstats.dedup_total > 0:
st.markdown(
"There are {0} duplicate items in the dataset. "
"For more information about the duplicates, "
"click the 'Duplicates' tab below.".format(str(dstats.dedup_total))
)
else:
st.markdown("There are 0 duplicate items in the dataset. ")
### Show the label distribution from the datasets
def expander_label_distribution(fig_labels, column_id):
with st.expander(f"Label Distribution{column_id}", expanded=False):
st.caption(
"Use this widget to see how balanced the labels in your dataset are."
)
if fig_labels is not None:
st.plotly_chart(fig_labels, use_container_width=True)
else:
st.markdown("No labels were found in the dataset")
def expander_text_lengths(dstats, column_id):
_TEXT_LENGTH_CAPTION = (
"Use this widget to identify outliers, particularly suspiciously long outliers."
)
with st.expander(f"Text Lengths{column_id}", expanded=False):
st.caption(_TEXT_LENGTH_CAPTION)
st.markdown(
"Below, you can see how the lengths of the text instances in your dataset are distributed."
)
st.markdown(
"Any unexpected peaks or valleys in the distribution may help to identify instances you want to remove or augment."
)
st.markdown(
"### Here is the relative frequency of different text lengths in your dataset:"
)
try:
st.image(dstats.fig_tok_length_png)
except:
st.pyplot(dstats.fig_tok_length, use_container_width=True)
st.markdown(
"The average length of text instances is **"
+ str(dstats.avg_length)
+ " words**, with a standard deviation of **"
+ str(dstats.std_length)
+ "**."
)
# This is quite a large file and is breaking our ability to navigate the app development.
# Just passing if it's not already there for launch v0
if dstats.length_df is not None:
start_id_show_lengths = st.selectbox(
"Show examples of length:",
sorted(dstats.length_df["length"].unique().tolist()),
key=f"select_show_length_{column_id}",
)
st.table(
dstats.length_df[
dstats.length_df["length"] == start_id_show_lengths
].set_index("length")
)
### Third, use a sentence embedding model
def expander_text_embeddings(
text_dset, fig_tree, node_list, embeddings, text_field, column_id
):
with st.expander(f"Text Embedding Clusters{column_id}", expanded=False):
_EMBEDDINGS_CAPTION = """
### Hierarchical Clustering of Text Fields
Taking in the diversity of text represented in a dataset can be
challenging when it is made up of hundreds to thousands of sentences.
Grouping these text items based on a measure of similarity can help
users gain some insights into their distribution.
The following figure shows a hierarchical clustering of the text fields
in the dataset based on a
[Sentence-Transformer](https://hf.co/sentence-transformers/all-mpnet-base-v2)
model. Clusters are merged if any of the embeddings in cluster A has a
dot product with any of the embeddings or with the centroid of cluster B
higher than a threshold (one threshold per level, from 0.5 to 0.95).
To explore the clusters, you can:
- hover over a node to see the 5 most representative examples (deduplicated)
- enter an example in the text box below to see which clusters it is most similar to
- select a cluster by ID to show all of its examples
"""
st.markdown(_EMBEDDINGS_CAPTION)
st.plotly_chart(fig_tree, use_container_width=True)
st.markdown("---\n")
if st.checkbox(
label="Enter text to see nearest clusters",
key=f"search_clusters_{column_id}",
):
compare_example = st.text_area(
label="Enter some text here to see which of the clusters in the dataset it is closest to",
key=f"search_cluster_input_{column_id}",
)
if compare_example != "":
paths_to_leaves = embeddings.cached_clusters.get(
compare_example,
embeddings.find_cluster_beam(compare_example, beam_size=50),
)
clusters_intro = ""
if paths_to_leaves[0][1] < 0.3:
clusters_intro += (
"**Warning: no close clusters found (best score <0.3). **"
)
clusters_intro += "The closest clusters to the text entered aboce are:"
st.markdown(clusters_intro)
for path, score in paths_to_leaves[:5]:
example = text_dset[
node_list[path[-1]]["sorted_examples_centroid"][0][0]
][text_field][:256]
st.write(
f"Cluster {path[-1]:5d} | Score: {score:.3f} \n Example: {example}"
)
show_node_default = paths_to_leaves[0][0][-1]
else:
show_node_default = len(node_list) // 2
else:
show_node_default = len(node_list) // 2
st.markdown("---\n")
show_node = st.selectbox(
f"Choose a leaf node to explore in the{column_id} dataset:",
range(len(node_list)),
index=show_node_default,
)
node = node_list[show_node]
start_id = st.slider(
f"Show closest sentences in cluster to the centroid{column_id} starting at index:",
0,
len(node["sorted_examples_centroid"]) - 5,
value=0,
step=5,
)
for sid, sim in node["sorted_examples_centroid"][start_id : start_id + 5]:
# only show the first 4 lines and the first 10000 characters
show_text = text_dset[sid][text_field][:10000]
show_text = "\n".join(show_text.split("\n")[:4])
st.text(f"{sim:.3f} \t {show_text}")
### Then, show duplicates
def expander_text_duplicates(dstats, column_id):
# TODO: Saving/loading figure
with st.expander(f"Text Duplicates{column_id}", expanded=False):
st.caption(
"Use this widget to identify text strings that appear more than once."
)
st.markdown(
"A model's training and testing may be negatively affected by unwarranted duplicates ([Lee et al., 2021](https://arxiv.org/abs/2107.06499))."
)
st.markdown("------")
st.write(
"### Here is the list of all the duplicated items and their counts in your dataset:"
)
if dstats.dup_counts_df is None or dstats.dup_counts_df.empty:
st.write("There are no duplicates in this dataset! 🥳")
else:
st.dataframe(dstats.dup_counts_df.reset_index(drop=True))
def expander_npmi_description(min_vocab):
_NPMI_CAPTION = (
"Use this widget to identify problematic biases and stereotypes in your data."
)
_NPMI_CAPTION1 = """
nPMI scores for a word help to identify potentially
problematic associations, ranked by how close the association is."""
_NPMI_CAPTION2 = """
nPMI bias scores for paired words help to identify how word
associations are skewed between the selected selected words
([Aka et al., 2021](https://arxiv.org/abs/2103.03417)).
"""
st.caption(_NPMI_CAPTION)
st.markdown(_NPMI_CAPTION1)
st.markdown(_NPMI_CAPTION2)
st.markdown(" ")
st.markdown(
"You can select from gender and sexual orientation "
"identity terms that appear in the dataset at least %s "
"times." % min_vocab
)
st.markdown(
"The resulting ranked words are those that co-occur with both "
"identity terms. "
)
st.markdown(
"The more *positive* the score, the more associated the word is with the first identity term. "
"The more *negative* the score, the more associated the word is with the second identity term."
)
### Finally, show Zipf stuff
def expander_zipf(z, zipf_fig, column_id):
with st.expander(
f"Vocabulary Distribution{column_id}: Zipf's Law Fit", expanded=False
):
try:
_ZIPF_CAPTION = """This shows how close the observed language is to an ideal
natural language distribution following [Zipf's law](https://en.wikipedia.org/wiki/Zipf%27s_law),
calculated by minimizing the [Kolmogorov-Smirnov (KS) statistic](https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test)."""
powerlaw_eq = r"""p(x) \propto x^{- \alpha}"""
zipf_summary = (
"The optimal alpha based on this dataset is: **"
+ str(round(z.alpha, 2))
+ "**, with a KS distance of: **"
+ str(round(z.distance, 2))
)
zipf_summary += (
"**. This was fit with a minimum rank value of: **"
+ str(int(z.xmin))
+ "**, which is the optimal rank *beyond which* the scaling regime of the power law fits best."
)
alpha_warning = "Your alpha value is a bit on the high side, which means that the distribution over words in this dataset is a bit unnatural. This could be due to non-language items throughout the dataset."
xmin_warning = "The minimum rank for this fit is a bit on the high side, which means that the frequencies of your most common words aren't distributed as would be expected by Zipf's law."
fit_results_table = pd.DataFrame.from_dict(
{
r"Alpha:": [str("%.2f" % z.alpha)],
"KS distance:": [str("%.2f" % z.distance)],
"Min rank:": [str("%s" % int(z.xmin))],
},
columns=["Results"],
orient="index",
)
fit_results_table.index.name = column_id
st.caption(
"Use this widget for the counts of different words in your dataset, measuring the difference between the observed count and the expected count under Zipf's law."
)
st.markdown(_ZIPF_CAPTION)
st.write(
"""
A Zipfian distribution follows the power law: $p(x) \propto x^{-α}$
with an ideal α value of 1."""
)
st.markdown(
"In general, an alpha greater than 2 or a minimum rank greater than 10 (take with a grain of salt) means that your distribution is relativaly _unnatural_ for natural language. This can be a sign of mixed artefacts in the dataset, such as HTML markup."
)
st.markdown(
"Below, you can see the counts of each word in your dataset vs. the expected number of counts following a Zipfian distribution."
)
st.markdown("-----")
st.write("### Here is your dataset's Zipf results:")
st.dataframe(fit_results_table)
st.write(zipf_summary)
# TODO: Nice UI version of the content in the comments.
# st.markdown("\nThe KS test p-value is < %.2f" % z.ks_test.pvalue)
# if z.ks_test.pvalue < 0.01:
# st.markdown(
# "\n Great news! Your data fits a powerlaw with a minimum KS " "distance of %.4f" % z.distance)
# else:
# st.markdown("\n Sadly, your data does not fit a powerlaw. =(")
# st.markdown("Checking the goodness of fit of our observed distribution")
# st.markdown("to the hypothesized power law distribution")
# st.markdown("using a Kolmogorov–Smirnov (KS) test.")
st.plotly_chart(zipf_fig, use_container_width=True)
if z.alpha > 2:
st.markdown(alpha_warning)
if z.xmin > 5:
st.markdown(xmin_warning)
except:
st.write("Under construction!")
### Finally finally finally, show nPMI stuff.
def npmi_widget(npmi_stats, min_vocab, column_id):
"""
Part of the main app, but uses a user interaction so pulled out as its own f'n.
:param use_cache:
:param column_id:
:param npmi_stats:
:param min_vocab:
:return:
"""
with st.expander(f"Word Association{column_id}: nPMI", expanded=False):
if len(npmi_stats.available_terms) > 0:
expander_npmi_description(min_vocab)
st.markdown("-----")
term1 = st.selectbox(
f"What is the first term you want to select?{column_id}",
npmi_stats.available_terms,
)
term2 = st.selectbox(
f"What is the second term you want to select?{column_id}",
reversed(npmi_stats.available_terms),
)
# We calculate/grab nPMI data based on a canonical (alphabetic)
# subgroup ordering.
subgroup_pair = sorted([term1, term2])
try:
joint_npmi_df = npmi_stats.load_or_prepare_joint_npmi(subgroup_pair)
npmi_show(joint_npmi_df)
except KeyError:
st.markdown(
"**WARNING!** The nPMI for these terms has not been pre-computed, please re-run caching."
)
else:
st.markdown(
"No words found co-occurring with both of the selected identity terms."
)
def npmi_show(paired_results):
if paired_results.empty:
st.markdown("No words that co-occur enough times for results! Or there's a 🐛. Or we're still computing this one. 🤷")
else:
s = pd.DataFrame(paired_results.sort_values(by="npmi-bias", ascending=True))
# s.columns=pd.MultiIndex.from_arrays([['npmi','npmi','npmi','count', 'count'],['bias','man','straight','man','straight']])
s.index.name = "word"
npmi_cols = s.filter(like="npmi").columns
count_cols = s.filter(like="count").columns
if s.shape[0] > 10000:
bias_thres = max(abs(s["npmi-bias"][5000]), abs(s["npmi-bias"][-5000]))
print(f"filtering with bias threshold: {bias_thres}")
s_filtered = s[s["npmi-bias"].abs() > bias_thres]
else:
s_filtered = s
# TODO: This is very different look than the duplicates table above. Should probably standardize.
cm = sns.palplot(sns.diverging_palette(270, 36, s=99, l=48, n=16))
out_df = (
s_filtered.style.background_gradient(subset=npmi_cols, cmap=cm)
.format(subset=npmi_cols, formatter="{:,.3f}")
.format(subset=count_cols, formatter=int)
.set_properties(
subset=count_cols, **{"width": "10em", "text-align": "center"}
)
.set_properties(**{"align": "center"})
.set_caption(
"nPMI scores and co-occurence counts between the selected identity terms and the words they both co-occur with"
)
) # s = pd.read_excel("output.xlsx", index_col="word")
st.write("### Here is your dataset's nPMI results:")
st.dataframe(out_df)
### Dumping unused functions here for now
### Second, show the distribution of text perplexities
def expander_text_perplexities(text_label_df, sorted_sents_loss, fig_loss):
with st.expander("Show text perplexities A", expanded=False):
st.markdown("### Text perplexities A")
st.plotly_chart(fig_loss, use_container_width=True)
start_id_show_loss = st.slider(
"Show highest perplexity sentences in A starting at index:",
0,
text_label_df.shape[0] - 5,
value=0,
step=5,
)
for lss, sent in sorted_sents_loss[start_id_show_loss : start_id_show_loss + 5]:
st.text(f"{lss:.3f} {sent}")
|