Spaces:
Build error
Build error
meg-huggingface
Begins modularizing so that each widget can be independently loaded without having a requirement on the ordering of load_or_preparing in app.py. This means that each function corresponding to a widget will check if the variables it depends on have been calculated yet. If not, it will call back to calculate them. Because of the messiness this causes with passing the use_cache variable around, I've now set use_cache as a global variable, set when the DatasetStatisticsCacheClass is initialized, and removed the use_cache arguments appearing in nearly every function.
4b53042
# Copyright 2021 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import logging | |
from os import mkdir | |
from os.path import isdir | |
from pathlib import Path | |
import streamlit as st | |
from data_measurements import dataset_statistics, dataset_utils | |
from data_measurements import streamlit_utils as st_utils | |
logs = logging.getLogger(__name__) | |
logs.setLevel(logging.WARNING) | |
logs.propagate = False | |
if not logs.handlers: | |
Path('./log_files').mkdir(exist_ok=True) | |
# Logging info to log file | |
file = logging.FileHandler("./log_files/app.log") | |
fileformat = logging.Formatter("%(asctime)s:%(message)s") | |
file.setLevel(logging.INFO) | |
file.setFormatter(fileformat) | |
# Logging debug messages to stream | |
stream = logging.StreamHandler() | |
streamformat = logging.Formatter("[data_measurements_tool] %(message)s") | |
stream.setLevel(logging.WARNING) | |
stream.setFormatter(streamformat) | |
logs.addHandler(file) | |
logs.addHandler(stream) | |
st.set_page_config( | |
page_title="Demo to showcase dataset metrics", | |
page_icon="https://huggingface.co/front/assets/huggingface_logo.svg", | |
layout="wide", | |
initial_sidebar_state="auto", | |
) | |
# colorblind-friendly colors | |
colors = [ | |
"#332288", | |
"#117733", | |
"#882255", | |
"#AA4499", | |
"#CC6677", | |
"#44AA99", | |
"#DDCC77", | |
"#88CCEE", | |
] | |
CACHE_DIR = dataset_utils.CACHE_DIR | |
# String names we are using (not coming from the stored dataset). | |
OUR_TEXT_FIELD = dataset_utils.OUR_TEXT_FIELD | |
OUR_LABEL_FIELD = dataset_utils.OUR_LABEL_FIELD | |
TOKENIZED_FIELD = dataset_utils.TOKENIZED_FIELD | |
EMBEDDING_FIELD = dataset_utils.EMBEDDING_FIELD | |
LENGTH_FIELD = dataset_utils.LENGTH_FIELD | |
# TODO: Allow users to specify this. | |
_MIN_VOCAB_COUNT = 10 | |
_SHOW_TOP_N_WORDS = 10 | |
def load_or_prepare(ds_args, show_embeddings, use_cache=False): | |
""" | |
Takes the dataset arguments from the GUI and uses them to load a dataset from the Hub or, if | |
a cache for those arguments is available, to load it from the cache. | |
Args: | |
ds_args (dict): the dataset arguments defined via the streamlit app GUI | |
show_embeddings (Bool): whether embeddings should we loaded and displayed for this dataset | |
use_cache (Bool) : whether the cache is used by default or not | |
Returns: | |
dstats: the computed dataset statistics (from the dataset_statistics class) | |
""" | |
if not isdir(CACHE_DIR): | |
logs.warning("Creating cache") | |
# We need to preprocess everything. | |
# This should eventually all go into a prepare_dataset CLI | |
mkdir(CACHE_DIR) | |
if use_cache: | |
logs.warning("Using cache") | |
dstats = dataset_statistics.DatasetStatisticsCacheClass(CACHE_DIR, **ds_args, use_cache=use_cache) | |
logs.warning("Loading Dataset") | |
dstats.load_or_prepare_dataset() | |
logs.warning("Extracting Labels") | |
dstats.load_or_prepare_labels() | |
logs.warning("Computing Text Lengths") | |
dstats.load_or_prepare_text_lengths() | |
logs.warning("Computing Duplicates") | |
dstats.load_or_prepare_text_duplicates() | |
logs.warning("Extracting Vocabulary") | |
dstats.load_or_prepare_vocab() | |
logs.warning("Calculating General Statistics...") | |
dstats.load_or_prepare_general_stats() | |
logs.warning("Completed Calculation.") | |
logs.warning("Calculating Fine-Grained Statistics...") | |
if show_embeddings: | |
logs.warning("Loading Embeddings") | |
dstats.load_or_prepare_embeddings() | |
print(dstats.fig_tree) | |
# TODO: This has now been moved to calculation when the npmi widget is loaded. | |
logs.warning("Loading Terms for nPMI") | |
dstats.load_or_prepare_npmi_terms() | |
logs.warning("Loading Zipf") | |
dstats.load_or_prepare_zipf() | |
return dstats | |
def load_or_prepare_widgets(ds_args, show_embeddings, use_cache=False): | |
""" | |
Loader specifically for the widgets used in the app. | |
Args: | |
ds_args: | |
show_embeddings: | |
use_cache: | |
Returns: | |
""" | |
if not isdir(CACHE_DIR): | |
logs.warning("Creating cache") | |
# We need to preprocess everything. | |
# This should eventually all go into a prepare_dataset CLI | |
mkdir(CACHE_DIR) | |
if use_cache: | |
logs.warning("Using cache") | |
dstats = dataset_statistics.DatasetStatisticsCacheClass(CACHE_DIR, **ds_args, use_cache=use_cache) | |
# Header widget | |
dstats.load_or_prepare_dset_peek() | |
# General stats widget | |
dstats.load_or_prepare_general_stats() | |
# Labels widget | |
dstats.load_or_prepare_labels() | |
# Text lengths widget | |
dstats.load_or_prepare_text_lengths() | |
if show_embeddings: | |
# Embeddings widget | |
dstats.load_or_prepare_embeddings() | |
dstats.load_or_prepare_text_duplicates() | |
def show_column(dstats, ds_name_to_dict, show_embeddings, column_id, use_cache=True): | |
""" | |
Function for displaying the elements in the right column of the streamlit app. | |
Args: | |
ds_name_to_dict (dict): the dataset name and options in dictionary form | |
show_embeddings (Bool): whether embeddings should we loaded and displayed for this dataset | |
column_id (str): what column of the dataset the analysis is done on | |
use_cache (Bool): whether the cache is used by default or not | |
Returns: | |
The function displays the information using the functions defined in the st_utils class. | |
""" | |
# Note that at this point we assume we can use cache; default value is True. | |
# start showing stuff | |
title_str = f"### Showing{column_id}: {dstats.dset_name} - {dstats.dset_config} - {'-'.join(dstats.text_field)}" | |
st.markdown(title_str) | |
logs.info("showing header") | |
st_utils.expander_header(dstats, ds_name_to_dict, column_id) | |
logs.info("showing general stats") | |
st_utils.expander_general_stats(dstats, column_id) | |
st_utils.expander_label_distribution(dstats.fig_labels, column_id) | |
st_utils.expander_text_lengths( | |
dstats.tokenized_df, | |
dstats.fig_tok_length, | |
dstats.avg_length, | |
dstats.std_length, | |
OUR_TEXT_FIELD, | |
LENGTH_FIELD, | |
column_id, | |
) | |
st_utils.expander_text_duplicates(dstats, column_id) | |
# We do the loading of these after the others in order to have some time | |
# to compute while the user works with the details above. | |
# Uses an interaction; handled a bit differently than other widgets. | |
logs.info("showing npmi widget") | |
npmi_stats = dataset_statistics.nPMIStatisticsCacheClass( | |
dstats, use_cache=use_cache | |
) | |
available_terms = npmi_stats.get_available_terms() | |
st_utils.npmi_widget( | |
column_id, available_terms, npmi_stats, _MIN_VOCAB_COUNT, use_cache=use_cache | |
) | |
logs.info("showing zipf") | |
st_utils.expander_zipf(dstats.z, dstats.zipf_fig, column_id) | |
if show_embeddings: | |
st_utils.expander_text_embeddings( | |
dstats.text_dset, | |
dstats.fig_tree, | |
dstats.node_list, | |
dstats.embeddings, | |
OUR_TEXT_FIELD, | |
column_id, | |
) | |
def main(): | |
""" Sidebar description and selection """ | |
ds_name_to_dict = dataset_utils.get_dataset_info_dicts() | |
st.title("Data Measurements Tool") | |
# Get the sidebar details | |
st_utils.sidebar_header() | |
# Set up naming, configs, and cache path. | |
compare_mode = st.sidebar.checkbox("Comparison mode") | |
# When not doing new development, use the cache. | |
use_cache = False | |
show_embeddings = st.sidebar.checkbox("Show embeddings") | |
# List of datasets for which embeddings are hard to compute: | |
if compare_mode: | |
logs.warning("Using Comparison Mode") | |
dataset_args_left = st_utils.sidebar_selection(ds_name_to_dict, " A") | |
dataset_args_right = st_utils.sidebar_selection(ds_name_to_dict, " B") | |
left_col, _, right_col = st.columns([10, 1, 10]) | |
dstats_left = load_or_prepare( | |
dataset_args_left, show_embeddings, use_cache=use_cache | |
) | |
with left_col: | |
show_column(dstats_left, ds_name_to_dict, show_embeddings, " A") | |
dstats_right = load_or_prepare( | |
dataset_args_right, show_embeddings, use_cache=use_cache | |
) | |
with right_col: | |
show_column(dstats_right, ds_name_to_dict, show_embeddings, " B") | |
else: | |
logs.warning("Using Single Dataset Mode") | |
dataset_args = st_utils.sidebar_selection(ds_name_to_dict, "") | |
dstats = load_or_prepare(dataset_args, show_embeddings, use_cache=use_cache) | |
show_column(dstats, ds_name_to_dict, show_embeddings, "") | |
if __name__ == "__main__": | |
main() | |