Spaces:
Running
Running
File size: 14,126 Bytes
a0359a1 6e2127b a0359a1 6e2127b a0359a1 6e2127b 64632c4 6e2127b a0359a1 6e2127b a0359a1 6e2127b a0359a1 6e2127b a0359a1 6e2127b a0359a1 6e2127b a0359a1 6e2127b a0359a1 6e2127b a0359a1 6e2127b a0359a1 6e2127b a0359a1 6e2127b a0359a1 6e2127b a0359a1 6e2127b a0359a1 6e2127b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
import gradio as gr
from PyPDF2 import PdfReader
from bs4 import BeautifulSoup
import openai
import traceback
import requests
from io import BytesIO
from transformers import AutoTokenizer
import json
import os
from openai import OpenAI
# Cache for tokenizers to avoid reloading
tokenizer_cache = {}
# Global variables for providers
PROVIDERS = {
"SambaNova": {
"name": "SambaNova",
"logo": "https://venturebeat.com/wp-content/uploads/2020/02/SambaNovaLogo_H_F.jpg",
"endpoint": "https://api.sambanova.ai/v1/",
"api_key_env_var": "SAMBANOVA_API_KEY",
"models": [
"Meta-Llama-3.1-70B-Instruct",
# Add more models if needed
],
"type": "tuples",
"max_total_tokens": "50000",
},
"Hyperbolic": {
"name": "hyperbolic",
"logo": "https://www.nftgators.com/wp-content/uploads/2024/07/Hyperbolic.jpg",
"endpoint": "https://api.hyperbolic.xyz/v1",
"api_key_env_var": "HYPERBOLIC_API_KEY",
"models": [
"meta-llama/Meta-Llama-3.1-405B-Instruct",
],
"type": "tuples",
"max_total_tokens": "50000",
},
}
# Function to fetch paper information from OpenReview
def fetch_paper_info_neurips(paper_id):
url = f"https://openreview.net/forum?id={paper_id}"
response = requests.get(url)
if response.status_code != 200:
return None
html_content = response.content
soup = BeautifulSoup(html_content, 'html.parser')
# Extract title
title_tag = soup.find('h2', class_='citation_title')
title = title_tag.get_text(strip=True) if title_tag else 'Title not found'
# Extract authors
authors = []
author_div = soup.find('div', class_='forum-authors')
if author_div:
author_tags = author_div.find_all('a')
authors = [tag.get_text(strip=True) for tag in author_tags]
author_list = ', '.join(authors) if authors else 'Authors not found'
# Extract abstract
abstract_div = soup.find('strong', text='Abstract:')
if abstract_div:
abstract_paragraph = abstract_div.find_next_sibling('div')
abstract = abstract_paragraph.get_text(strip=True) if abstract_paragraph else 'Abstract not found'
else:
abstract = 'Abstract not found'
# Construct preamble in Markdown
preamble = f"**[{title}](https://openreview.net/forum?id={paper_id})**\n\n{author_list}\n\n"
return preamble
def fetch_paper_content(paper_id):
try:
# Construct the URL
url = f"https://openreview.net/pdf?id={paper_id}"
# Fetch the PDF
response = requests.get(url)
response.raise_for_status() # Raise an exception for HTTP errors
# Read the PDF content
pdf_content = BytesIO(response.content)
reader = PdfReader(pdf_content)
# Extract text from the PDF
text = ""
for page in reader.pages:
text += page.extract_text()
return text # Return full text; truncation will be handled later
except Exception as e:
print(f"An error occurred: {e}")
return None
def create_chat_interface(provider_dropdown, model_dropdown, paper_content, hf_token_input, default_type,
provider_max_total_tokens):
# Define the function to handle the chat
print("the type is", default_type.value)
def get_fn(message, history, paper_content_value, hf_token_value, provider_name_value, model_name_value,
max_total_tokens):
provider_info = PROVIDERS[provider_name_value]
endpoint = provider_info['endpoint']
api_key_env_var = provider_info['api_key_env_var']
models = provider_info['models']
max_total_tokens = int(max_total_tokens)
# Load tokenizer and cache it
tokenizer_key = f"{provider_name_value}_{model_name_value}"
if tokenizer_key not in tokenizer_cache:
# Load the tokenizer; adjust the model path based on the provider and model
# This is a placeholder; you need to provide the correct tokenizer path
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-1B-Instruct",
token=os.environ.get("HF_TOKEN"))
tokenizer_cache[tokenizer_key] = tokenizer
else:
tokenizer = tokenizer_cache[tokenizer_key]
# Include the paper content as context
if paper_content_value:
context = f"The discussion is about the following paper:\n{paper_content_value}\n\n"
else:
context = ""
# Tokenize the context
context_tokens = tokenizer.encode(context)
context_token_length = len(context_tokens)
# Prepare the messages without context
messages = []
message_tokens_list = []
total_tokens = context_token_length # Start with context tokens
for user_msg, assistant_msg in history:
# Tokenize user message
user_tokens = tokenizer.encode(user_msg)
messages.append({"role": "user", "content": user_msg})
message_tokens_list.append(len(user_tokens))
total_tokens += len(user_tokens)
# Tokenize assistant message
if assistant_msg:
assistant_tokens = tokenizer.encode(assistant_msg)
messages.append({"role": "assistant", "content": assistant_msg})
message_tokens_list.append(len(assistant_tokens))
total_tokens += len(assistant_tokens)
# Tokenize the new user message
message_tokens = tokenizer.encode(message)
messages.append({"role": "user", "content": message})
message_tokens_list.append(len(message_tokens))
total_tokens += len(message_tokens)
# Check if total tokens exceed the maximum allowed tokens
if total_tokens > max_total_tokens:
# Attempt to truncate the context first
available_tokens = max_total_tokens - (total_tokens - context_token_length)
if available_tokens > 0:
# Truncate the context to fit the available tokens
truncated_context_tokens = context_tokens[:available_tokens]
context = tokenizer.decode(truncated_context_tokens)
context_token_length = available_tokens
total_tokens = total_tokens - len(context_tokens) + context_token_length
else:
# Not enough space for context; remove it
context = ""
total_tokens -= context_token_length
context_token_length = 0
# If total tokens still exceed the limit, truncate the message history
while total_tokens > max_total_tokens and len(messages) > 1:
# Remove the oldest message
removed_message = messages.pop(0)
removed_tokens = message_tokens_list.pop(0)
total_tokens -= removed_tokens
# Rebuild the final messages list including the (possibly truncated) context
final_messages = []
if context:
final_messages.append(
{"role": "system", "content": f"{context}"})
final_messages.extend(messages)
# Use the provider's API key
api_key = hf_token_value or os.environ.get(api_key_env_var)
if not api_key:
raise ValueError("API token is not provided.")
# Initialize the OpenAI client with the provider's endpoint
client = OpenAI(
base_url=endpoint,
api_key=api_key,
)
try:
# Create the chat completion
completion = client.chat.completions.create(
model=model_name_value,
messages=final_messages,
stream=True,
)
response_text = ""
for chunk in completion:
delta = chunk.choices[0].delta.content or ""
response_text += delta
yield response_text
except json.JSONDecodeError as e:
print("Failed to decode JSON during the completion creation process.")
print(f"Error Message: {e.msg}")
print(f"Error Position: Line {e.lineno}, Column {e.colno} (Character {e.pos})")
print(f"Problematic JSON Data: {e.doc}")
yield f"{e.doc}"
except openai.OpenAIError as openai_err:
# Handle other OpenAI-related errors
print(f"An OpenAI error occurred: {openai_err}")
yield f"{openai_err}"
except Exception as ex:
# Handle any other exceptions
print(f"An unexpected error occurred: {ex}")
yield f"{ex}"
# Create the ChatInterface
chat_interface = gr.ChatInterface(
fn=get_fn,
chatbot=gr.Chatbot(
label="Chatbot",
scale=1,
height=400,
autoscroll=True,
),
additional_inputs=[paper_content, hf_token_input, provider_dropdown, model_dropdown, provider_max_total_tokens],
type="tuples",
)
return chat_interface
def paper_chat_tab(paper_id):
with gr.Column():
# Textbox to display the paper title and authors
content = gr.Markdown(value="")
# Preamble message to hint the user
gr.Markdown("**Note:** Providing your own API token can help you avoid rate limits.")
# Input for API token
provider_names = list(PROVIDERS.keys())
default_provider = provider_names[0]
default_type = gr.State(value=PROVIDERS[default_provider]["type"])
default_max_total_tokens = gr.State(value=PROVIDERS[default_provider]["max_total_tokens"])
provider_dropdown = gr.Dropdown(
label="Select Provider",
choices=provider_names,
value=default_provider
)
hf_token_input = gr.Textbox(
label=f"Enter your {default_provider} API token (optional)",
type="password",
placeholder=f"Enter your {default_provider} API token to avoid rate limits"
)
# Dropdown for selecting the model
model_dropdown = gr.Dropdown(
label="Select Model",
choices=PROVIDERS[default_provider]['models'],
value=PROVIDERS[default_provider]['models'][0]
)
# Placeholder for the provider logo
logo_html = gr.HTML(
value=f'<img src="{PROVIDERS[default_provider]["logo"]}" width="100px" />'
)
# Note about the provider
note_markdown = gr.Markdown(f"**Note:** This model is supported by {default_provider}.")
# State to store the paper content
paper_content = gr.State()
# Function to update models and logo when provider changes
def update_provider(selected_provider):
provider_info = PROVIDERS[selected_provider]
models = provider_info['models']
logo_url = provider_info['logo']
chatbot_message_type = provider_info['type']
max_total_tokens = provider_info['max_total_tokens']
# Update the models dropdown
model_dropdown_choices = gr.update(choices=models, value=models[0])
# Update the logo image
logo_html_content = f'<img src="{logo_url}" width="100px" />'
logo_html_update = gr.update(value=logo_html_content)
# Update the note markdown
note_markdown_update = gr.update(value=f"**Note:** This model is supported by {selected_provider}.")
# Update the hf_token_input label and placeholder
hf_token_input_update = gr.update(
label=f"Enter your {selected_provider} API token (optional)",
placeholder=f"Enter your {selected_provider} API token to avoid rate limits"
)
return model_dropdown_choices, logo_html_update, note_markdown_update, hf_token_input_update, chatbot_message_type, max_total_tokens
provider_dropdown.change(
fn=update_provider,
inputs=provider_dropdown,
outputs=[model_dropdown, logo_html, note_markdown, hf_token_input, default_type, default_max_total_tokens],
queue=False
)
# Function to update the paper info
def update_paper_info(paper_id_value, selected_model):
preamble = fetch_paper_info_neurips(paper_id_value)
text = fetch_paper_content(paper_id_value)
if preamble is None:
preamble = "Paper not found or could not retrieve paper information."
if text is None:
return preamble, None
return preamble, text
# Update paper content when paper ID or model changes
paper_id.change(
fn=update_paper_info,
inputs=[paper_id, model_dropdown],
outputs=[content, paper_content]
)
model_dropdown.change(
fn=update_paper_info,
inputs=[paper_id, model_dropdown],
outputs=[content, paper_content],
queue=False,
)
# Create the chat interface
chat_interface = create_chat_interface(provider_dropdown, model_dropdown, paper_content, hf_token_input,
default_type, default_max_total_tokens)
def main():
"""
Launches the Gradio app.
"""
with gr.Blocks(css_paths="style.css") as demo:
x = gr.State(value="") # Initialize with an empty state
def update_state():
"""
Function to update the state.
"""
return "5G7ve8E1Lu"
with gr.Row():
update_button = gr.Button("Update State") # Button to update the state
# Update the state and reflect the change in the display
update_button.click(update_state, inputs=[], outputs=[x])
paper_chat_tab(x)
demo.launch(ssr_mode=False)
# Run the main function when the script is executed
if __name__ == "__main__":
main()
|