File size: 14,126 Bytes
a0359a1
 
 
6e2127b
 
a0359a1
 
 
6e2127b
a0359a1
 
 
 
 
 
 
6e2127b
 
 
 
 
 
 
 
 
 
 
 
 
 
64632c4
 
 
 
 
 
 
 
 
 
 
6e2127b
 
a0359a1
 
 
 
 
 
6e2127b
a0359a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e2127b
 
a0359a1
6e2127b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0359a1
 
6e2127b
a0359a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e2127b
 
a0359a1
 
6e2127b
 
a0359a1
 
 
6e2127b
a0359a1
6e2127b
a0359a1
 
 
 
 
 
6e2127b
a0359a1
 
 
 
 
 
 
 
6e2127b
 
 
 
 
 
 
 
 
 
 
 
 
 
a0359a1
 
 
 
 
 
 
 
6e2127b
a0359a1
6e2127b
 
a0359a1
 
6e2127b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
import gradio as gr
from PyPDF2 import PdfReader
from bs4 import BeautifulSoup
import openai
import traceback
import requests
from io import BytesIO
from transformers import AutoTokenizer
import json

import os
from openai import OpenAI

# Cache for tokenizers to avoid reloading
tokenizer_cache = {}

# Global variables for providers
PROVIDERS = {
    "SambaNova": {
        "name": "SambaNova",
        "logo": "https://venturebeat.com/wp-content/uploads/2020/02/SambaNovaLogo_H_F.jpg",
        "endpoint": "https://api.sambanova.ai/v1/",
        "api_key_env_var": "SAMBANOVA_API_KEY",
        "models": [
            "Meta-Llama-3.1-70B-Instruct",
            # Add more models if needed
        ],
        "type": "tuples",
        "max_total_tokens": "50000",
    },
    "Hyperbolic": {
        "name": "hyperbolic",
        "logo": "https://www.nftgators.com/wp-content/uploads/2024/07/Hyperbolic.jpg",
        "endpoint": "https://api.hyperbolic.xyz/v1",
        "api_key_env_var": "HYPERBOLIC_API_KEY",
        "models": [
            "meta-llama/Meta-Llama-3.1-405B-Instruct",
        ],
        "type": "tuples",
        "max_total_tokens": "50000",
    },
}


# Function to fetch paper information from OpenReview
def fetch_paper_info_neurips(paper_id):
    url = f"https://openreview.net/forum?id={paper_id}"
    response = requests.get(url)
    if response.status_code != 200:
        return None

    html_content = response.content
    soup = BeautifulSoup(html_content, 'html.parser')

    # Extract title
    title_tag = soup.find('h2', class_='citation_title')
    title = title_tag.get_text(strip=True) if title_tag else 'Title not found'

    # Extract authors
    authors = []
    author_div = soup.find('div', class_='forum-authors')
    if author_div:
        author_tags = author_div.find_all('a')
        authors = [tag.get_text(strip=True) for tag in author_tags]
    author_list = ', '.join(authors) if authors else 'Authors not found'

    # Extract abstract
    abstract_div = soup.find('strong', text='Abstract:')
    if abstract_div:
        abstract_paragraph = abstract_div.find_next_sibling('div')
        abstract = abstract_paragraph.get_text(strip=True) if abstract_paragraph else 'Abstract not found'
    else:
        abstract = 'Abstract not found'

    # Construct preamble in Markdown
    preamble = f"**[{title}](https://openreview.net/forum?id={paper_id})**\n\n{author_list}\n\n"

    return preamble


def fetch_paper_content(paper_id):
    try:
        # Construct the URL
        url = f"https://openreview.net/pdf?id={paper_id}"

        # Fetch the PDF
        response = requests.get(url)
        response.raise_for_status()  # Raise an exception for HTTP errors

        # Read the PDF content
        pdf_content = BytesIO(response.content)
        reader = PdfReader(pdf_content)

        # Extract text from the PDF
        text = ""
        for page in reader.pages:
            text += page.extract_text()

        return text  # Return full text; truncation will be handled later

    except Exception as e:
        print(f"An error occurred: {e}")
        return None


def create_chat_interface(provider_dropdown, model_dropdown, paper_content, hf_token_input, default_type,
                          provider_max_total_tokens):
    # Define the function to handle the chat
    print("the type is", default_type.value)

    def get_fn(message, history, paper_content_value, hf_token_value, provider_name_value, model_name_value,
               max_total_tokens):
        provider_info = PROVIDERS[provider_name_value]
        endpoint = provider_info['endpoint']
        api_key_env_var = provider_info['api_key_env_var']
        models = provider_info['models']
        max_total_tokens = int(max_total_tokens)

        # Load tokenizer and cache it
        tokenizer_key = f"{provider_name_value}_{model_name_value}"
        if tokenizer_key not in tokenizer_cache:
            # Load the tokenizer; adjust the model path based on the provider and model
            # This is a placeholder; you need to provide the correct tokenizer path
            tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-1B-Instruct",
                                                      token=os.environ.get("HF_TOKEN"))
            tokenizer_cache[tokenizer_key] = tokenizer
        else:
            tokenizer = tokenizer_cache[tokenizer_key]

        # Include the paper content as context
        if paper_content_value:
            context = f"The discussion is about the following paper:\n{paper_content_value}\n\n"
        else:
            context = ""

        # Tokenize the context
        context_tokens = tokenizer.encode(context)
        context_token_length = len(context_tokens)

        # Prepare the messages without context
        messages = []
        message_tokens_list = []
        total_tokens = context_token_length  # Start with context tokens

        for user_msg, assistant_msg in history:
            # Tokenize user message
            user_tokens = tokenizer.encode(user_msg)
            messages.append({"role": "user", "content": user_msg})
            message_tokens_list.append(len(user_tokens))
            total_tokens += len(user_tokens)

            # Tokenize assistant message
            if assistant_msg:
                assistant_tokens = tokenizer.encode(assistant_msg)
                messages.append({"role": "assistant", "content": assistant_msg})
                message_tokens_list.append(len(assistant_tokens))
                total_tokens += len(assistant_tokens)

        # Tokenize the new user message
        message_tokens = tokenizer.encode(message)
        messages.append({"role": "user", "content": message})
        message_tokens_list.append(len(message_tokens))
        total_tokens += len(message_tokens)

        # Check if total tokens exceed the maximum allowed tokens
        if total_tokens > max_total_tokens:
            # Attempt to truncate the context first
            available_tokens = max_total_tokens - (total_tokens - context_token_length)
            if available_tokens > 0:
                # Truncate the context to fit the available tokens
                truncated_context_tokens = context_tokens[:available_tokens]
                context = tokenizer.decode(truncated_context_tokens)
                context_token_length = available_tokens
                total_tokens = total_tokens - len(context_tokens) + context_token_length
            else:
                # Not enough space for context; remove it
                context = ""
                total_tokens -= context_token_length
                context_token_length = 0

        # If total tokens still exceed the limit, truncate the message history
        while total_tokens > max_total_tokens and len(messages) > 1:
            # Remove the oldest message
            removed_message = messages.pop(0)
            removed_tokens = message_tokens_list.pop(0)
            total_tokens -= removed_tokens

        # Rebuild the final messages list including the (possibly truncated) context
        final_messages = []
        if context:
            final_messages.append(
                {"role": "system", "content": f"{context}"})
        final_messages.extend(messages)

        # Use the provider's API key
        api_key = hf_token_value or os.environ.get(api_key_env_var)
        if not api_key:
            raise ValueError("API token is not provided.")

        # Initialize the OpenAI client with the provider's endpoint
        client = OpenAI(
            base_url=endpoint,
            api_key=api_key,
        )

        try:
            # Create the chat completion
            completion = client.chat.completions.create(
                model=model_name_value,
                messages=final_messages,
                stream=True,
            )
            response_text = ""
            for chunk in completion:
                delta = chunk.choices[0].delta.content or ""
                response_text += delta
                yield response_text
        except json.JSONDecodeError as e:
            print("Failed to decode JSON during the completion creation process.")
            print(f"Error Message: {e.msg}")
            print(f"Error Position: Line {e.lineno}, Column {e.colno} (Character {e.pos})")
            print(f"Problematic JSON Data: {e.doc}")
            yield f"{e.doc}"
        except openai.OpenAIError as openai_err:
            # Handle other OpenAI-related errors
            print(f"An OpenAI error occurred: {openai_err}")
            yield f"{openai_err}"
        except Exception as ex:
            # Handle any other exceptions
            print(f"An unexpected error occurred: {ex}")
            yield f"{ex}"

    # Create the ChatInterface
    chat_interface = gr.ChatInterface(
        fn=get_fn,
        chatbot=gr.Chatbot(
            label="Chatbot",
            scale=1,
            height=400,
            autoscroll=True,
        ),
        additional_inputs=[paper_content, hf_token_input, provider_dropdown, model_dropdown, provider_max_total_tokens],
        type="tuples",
    )
    return chat_interface


def paper_chat_tab(paper_id):
    with gr.Column():
        # Textbox to display the paper title and authors
        content = gr.Markdown(value="")

        # Preamble message to hint the user
        gr.Markdown("**Note:** Providing your own API token can help you avoid rate limits.")

        # Input for API token
        provider_names = list(PROVIDERS.keys())
        default_provider = provider_names[0]

        default_type = gr.State(value=PROVIDERS[default_provider]["type"])
        default_max_total_tokens = gr.State(value=PROVIDERS[default_provider]["max_total_tokens"])

        provider_dropdown = gr.Dropdown(
            label="Select Provider",
            choices=provider_names,
            value=default_provider
        )

        hf_token_input = gr.Textbox(
            label=f"Enter your {default_provider} API token (optional)",
            type="password",
            placeholder=f"Enter your {default_provider} API token to avoid rate limits"
        )

        # Dropdown for selecting the model
        model_dropdown = gr.Dropdown(
            label="Select Model",
            choices=PROVIDERS[default_provider]['models'],
            value=PROVIDERS[default_provider]['models'][0]
        )

        # Placeholder for the provider logo
        logo_html = gr.HTML(
            value=f'<img src="{PROVIDERS[default_provider]["logo"]}" width="100px" />'
        )

        # Note about the provider
        note_markdown = gr.Markdown(f"**Note:** This model is supported by {default_provider}.")

        # State to store the paper content
        paper_content = gr.State()

        # Function to update models and logo when provider changes
        def update_provider(selected_provider):
            provider_info = PROVIDERS[selected_provider]
            models = provider_info['models']
            logo_url = provider_info['logo']
            chatbot_message_type = provider_info['type']
            max_total_tokens = provider_info['max_total_tokens']

            # Update the models dropdown
            model_dropdown_choices = gr.update(choices=models, value=models[0])

            # Update the logo image
            logo_html_content = f'<img src="{logo_url}" width="100px" />'
            logo_html_update = gr.update(value=logo_html_content)

            # Update the note markdown
            note_markdown_update = gr.update(value=f"**Note:** This model is supported by {selected_provider}.")

            # Update the hf_token_input label and placeholder
            hf_token_input_update = gr.update(
                label=f"Enter your {selected_provider} API token (optional)",
                placeholder=f"Enter your {selected_provider} API token to avoid rate limits"
            )

            return model_dropdown_choices, logo_html_update, note_markdown_update, hf_token_input_update, chatbot_message_type, max_total_tokens

        provider_dropdown.change(
            fn=update_provider,
            inputs=provider_dropdown,
            outputs=[model_dropdown, logo_html, note_markdown, hf_token_input, default_type, default_max_total_tokens],
            queue=False
        )

        # Function to update the paper info
        def update_paper_info(paper_id_value, selected_model):
            preamble = fetch_paper_info_neurips(paper_id_value)
            text = fetch_paper_content(paper_id_value)
            if preamble is None:
                preamble = "Paper not found or could not retrieve paper information."
            if text is None:
                return preamble, None
            return preamble, text

        # Update paper content when paper ID or model changes
        paper_id.change(
            fn=update_paper_info,
            inputs=[paper_id, model_dropdown],
            outputs=[content, paper_content]
        )

        model_dropdown.change(
            fn=update_paper_info,
            inputs=[paper_id, model_dropdown],
            outputs=[content, paper_content],
            queue=False,
        )

        # Create the chat interface
        chat_interface = create_chat_interface(provider_dropdown, model_dropdown, paper_content, hf_token_input,
                                               default_type, default_max_total_tokens)


def main():
    """
    Launches the Gradio app.
    """
    with gr.Blocks(css_paths="style.css") as demo:
        x = gr.State(value="")  # Initialize with an empty state

        def update_state():
            """
            Function to update the state.
            """
            return "5G7ve8E1Lu"

        with gr.Row():
            update_button = gr.Button("Update State")  # Button to update the state

        # Update the state and reflect the change in the display
        update_button.click(update_state, inputs=[], outputs=[x])
        paper_chat_tab(x)

    demo.launch(ssr_mode=False)


# Run the main function when the script is executed
if __name__ == "__main__":
    main()