Spaces:
Running
Running
File size: 22,740 Bytes
a74e67c a0359a1 6e2127b a0359a1 6e2127b 8c5c31d a0359a1 8c5c31d a0359a1 6e2127b a74e67c 6e2127b a74e67c 6e2127b 64632c4 2886238 64632c4 6e2127b a0359a1 8c5c31d a0359a1 8c5c31d a0359a1 8c5c31d a0359a1 8c5c31d dbdfc66 8c5c31d dbdfc66 8c5c31d dbdfc66 8c5c31d dbdfc66 8c5c31d a0359a1 8c5c31d a0359a1 8c5c31d a0359a1 8c5c31d a0359a1 8c5c31d a0359a1 8c5c31d 6e2127b a0359a1 6e2127b a0359a1 b1815fe a0359a1 a74e67c a0359a1 a74e67c a0359a1 a74e67c a0359a1 6e2127b a0359a1 a74e67c a0359a1 a74e67c dbdfc66 aa8c7c6 a0359a1 dbdfc66 6e2127b a0359a1 dbdfc66 6e2127b 8c5c31d aa8c7c6 b1815fe 8c5c31d 6e2127b 8c5c31d 6e2127b 8c5c31d 6e2127b 8c5c31d aa8c7c6 8c5c31d aa8c7c6 a74e67c aa8c7c6 8c5c31d 6e2127b b1815fe 8c5c31d 6e2127b b1815fe 8c5c31d 6e2127b 8c5c31d 6e2127b 8c5c31d dbdfc66 8c5c31d dbdfc66 8c5c31d 6e2127b 8c5c31d 6e2127b 8c5c31d 6e2127b 8c5c31d 6e2127b b1815fe 8c5c31d 6e2127b 8c5c31d aa8c7c6 8c5c31d dbdfc66 8c5c31d aa8c7c6 8c5c31d aa8c7c6 8c5c31d 6e2127b aa8c7c6 8c5c31d 6e2127b 8c5c31d 6e2127b 8c5c31d 6e2127b b1815fe aa8c7c6 6e2127b dbdfc66 6e2127b 8c5c31d aa8c7c6 8c5c31d 6e2127b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 |
import google.generativeai as genai
import gradio as gr
from PyPDF2 import PdfReader
from bs4 import BeautifulSoup
import openai
import traceback
import requests
from io import BytesIO
from transformers import AutoTokenizer
import json
from datetime import datetime
import os
from openai import OpenAI
import re
# Cache for tokenizers to avoid reloading
tokenizer_cache = {}
# Global variables for providers
PROVIDERS = {
"Gemini": {
"name": "Gemini",
"logo": "https://www.gstatic.com/lamda/images/gemini_thumbnail_c362e5eadc46ca9f617e2.png",
"endpoint": "https://example-gemini-endpoint", # not need
# Not necessarily needed for Gemini since we use google.generativeai directly
"api_key_env_var": "GEMINI_API_KEY", # If using env vars for key storage
"models": [
"gemini-2.0-flash-exp",
"gemini-1.5-flash",
],
"type": "tuples",
"max_total_tokens": "50000",
},
"SambaNova": {
"name": "SambaNova",
"logo": "https://venturebeat.com/wp-content/uploads/2020/02/SambaNovaLogo_H_F.jpg",
"endpoint": "https://api.sambanova.ai/v1/",
"api_key_env_var": "SAMBANOVA_API_KEY",
"models": [
"Meta-Llama-3.1-70B-Instruct",
"Meta-Llama-3.3-70B-Instruct",
],
"type": "tuples",
"max_total_tokens": "50000",
},
"Hyperbolic": {
"name": "hyperbolic",
"logo": "https://www.nftgators.com/wp-content/uploads/2024/07/Hyperbolic.jpg",
"endpoint": "https://api.hyperbolic.xyz/v1",
"api_key_env_var": "HYPERBOLIC_API_KEY",
"models": [
"meta-llama/Llama-3.3-70B-Instruct",
"meta-llama/Meta-Llama-3.1-405B-Instruct",
],
"type": "tuples",
"max_total_tokens": "50000",
},
}
# Functions for paper fetching
def fetch_paper_info_neurips(paper_id):
url = f"https://openreview.net/forum?id={paper_id}"
response = requests.get(url)
if response.status_code != 200:
return None, None, None
html_content = response.content
soup = BeautifulSoup(html_content, 'html.parser')
# Extract title
title_tag = soup.find('h2', class_='citation_title')
title = title_tag.get_text(strip=True) if title_tag else 'Title not found'
# Extract authors
authors = []
author_div = soup.find('div', class_='forum-authors')
if author_div:
author_tags = author_div.find_all('a')
authors = [tag.get_text(strip=True) for tag in author_tags]
author_list = ', '.join(authors) if authors else 'Authors not found'
# Extract abstract
abstract_div = soup.find('strong', text='Abstract:')
if abstract_div:
abstract_paragraph = abstract_div.find_next_sibling('div')
abstract = abstract_paragraph.get_text(strip=True) if abstract_paragraph else 'Abstract not found'
else:
abstract = 'Abstract not found'
link = f"https://openreview.net/forum?id={paper_id}"
return title, author_list, f"**Abstract:** {abstract}\n\n[View on OpenReview]({link})"
def fetch_paper_content_neurips(paper_id):
try:
url = f"https://openreview.net/pdf?id={paper_id}"
response = requests.get(url)
response.raise_for_status()
pdf_content = BytesIO(response.content)
reader = PdfReader(pdf_content)
text = ""
for page in reader.pages:
text += page.extract_text()
return text
except:
return None
def fetch_paper_content_arxiv(paper_id):
try:
url = f"https://arxiv.org/pdf/{paper_id}.pdf"
response = requests.get(url)
response.raise_for_status()
pdf_content = BytesIO(response.content)
reader = PdfReader(pdf_content)
text = ""
for page in reader.pages:
text += page.extract_text()
return text
except Exception as e:
print(f"Error fetching paper content: {e}")
return None
def fetch_paper_info_paperpage(paper_id_value):
def extract_paper_id(input_string):
if re.fullmatch(r'\d+\.\d+', input_string.strip()):
return input_string.strip()
match = re.search(r'https://huggingface\.co/papers/(\d+\.\d+)', input_string)
if match:
return match.group(1)
return input_string.strip()
paper_id_value = extract_paper_id(paper_id_value)
url = f"https://huggingface.co/api/papers/{paper_id_value}?field=comments"
response = requests.get(url)
if response.status_code != 200:
return None, None, None
paper_info = response.json()
title = paper_info.get('title', 'No Title')
authors_list = [author.get('name', 'Unknown') for author in paper_info.get('authors', [])]
authors = ', '.join(authors_list)
summary = paper_info.get('summary', 'No Summary')
num_comments = len(paper_info.get('comments', []))
num_upvotes = paper_info.get('upvotes', 0)
link = f"https://huggingface.co/papers/{paper_id_value}"
details = f"{summary}<br/>👍{num_comments} 💬{num_upvotes}<br/> <a href='{link}' " \
f"target='_blank'>View on 🤗 hugging face</a>"
return title, authors, details
def fetch_paper_content_paperpage(paper_id_value):
def extract_paper_id(input_string):
if re.fullmatch(r'\d+\.\d+', input_string.strip()):
return input_string.strip()
match = re.search(r'https://huggingface\.co/papers/(\d+\.\d+)', input_string)
if match:
return match.group(1)
return input_string.strip()
paper_id_value = extract_paper_id(paper_id_value)
text = fetch_paper_content_arxiv(paper_id_value)
return text
PAPER_SOURCES = {
"neurips": {
"fetch_info": fetch_paper_info_neurips,
"fetch_pdf": fetch_paper_content_neurips
},
"paper_page": {
"fetch_info": fetch_paper_info_paperpage,
"fetch_pdf": fetch_paper_content_paperpage
}
}
def create_chat_interface(provider_dropdown, model_dropdown, paper_content, hf_token_input, default_type,
provider_max_total_tokens):
def get_fn(message, history, paper_content_value, hf_token_value, provider_name_value, model_name_value,
max_total_tokens):
provider_info = PROVIDERS[provider_name_value]
endpoint = provider_info['endpoint']
api_key_env_var = provider_info['api_key_env_var']
max_total_tokens = int(max_total_tokens)
tokenizer_key = f"{provider_name_value}_{model_name_value}"
if tokenizer_key not in tokenizer_cache:
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-1B-Instruct",
token=os.environ.get("HF_TOKEN"))
tokenizer_cache[tokenizer_key] = tokenizer
else:
tokenizer = tokenizer_cache[tokenizer_key]
if paper_content_value:
context = f"The discussion is about the following paper:\n{paper_content_value}\n\n"
else:
context = ""
context_tokens = tokenizer.encode(context)
context_token_length = len(context_tokens)
messages = []
message_tokens_list = []
total_tokens = context_token_length
# Reconstruct the conversation from history and current user message
for user_msg, assistant_msg in history:
user_tokens = tokenizer.encode(user_msg)
messages.append({"role": "user", "content": user_msg})
message_tokens_list.append(len(user_tokens))
total_tokens += len(user_tokens)
if assistant_msg:
assistant_tokens = tokenizer.encode(assistant_msg)
messages.append({"role": "assistant", "content": assistant_msg})
message_tokens_list.append(len(assistant_tokens))
total_tokens += len(assistant_tokens)
message_tokens = tokenizer.encode(message)
messages.append({"role": "user", "content": message})
message_tokens_list.append(len(message_tokens))
total_tokens += len(message_tokens)
# Token truncation logic
if total_tokens > max_total_tokens:
available_tokens = max_total_tokens - (total_tokens - context_token_length)
if available_tokens > 0:
truncated_context_tokens = context_tokens[:available_tokens]
context = tokenizer.decode(truncated_context_tokens)
context_token_length = available_tokens
total_tokens = total_tokens - len(context_tokens) + context_token_length
else:
context = ""
total_tokens -= context_token_length
context_token_length = 0
while total_tokens > max_total_tokens and len(messages) > 1:
removed_message = messages.pop(0)
removed_tokens = message_tokens_list.pop(0)
total_tokens -= removed_tokens
final_messages = []
if context:
final_messages.append(
{"role": "system" if not provider_name_value == "Gemini" else "user", "content": f"{context}"})
final_messages.extend(messages)
api_key = hf_token_value or os.environ.get(api_key_env_var)
if not api_key:
raise ValueError("API token is not provided.")
# Gemini logic
if provider_name_value == "Gemini":
import google.generativeai as genai
genai.configure(api_key=api_key)
# According to the docs, model should be instantiated with full model name, e.g. "models/gemini-1.5-flash"
# Ensure your PROVIDERS dict sets the model_name_value accordingly (e.g. "models/gemini-1.5-flash")
model = genai.GenerativeModel(model_name=model_name_value)
# Convert final_messages into Gemini's format:
# Gemini expects a list of messages: [{"role": "user"/"assistant"/"system", "parts": ["..."]}, ...]
gemini_messages = []
for m in final_messages:
gemini_messages.append({"role": m["role"], "parts": [m["content"]]})
# Now call generate_content with stream=True
try:
response = model.generate_content(gemini_messages, stream=True)
response_text = ""
for chunk in response:
if chunk.text:
response_text += chunk.text
yield response_text
except Exception as ex:
yield f"Error calling Gemini: {ex}"
else:
# Default OpenAI-compatible logic
from openai import OpenAI
import openai
import json
client = OpenAI(
base_url=endpoint,
api_key=api_key,
)
try:
completion = client.chat.completions.create(
model=model_name_value,
messages=final_messages,
stream=True,
)
response_text = ""
for chunk in completion:
delta = chunk.choices[0].delta.content or ""
response_text += delta
yield response_text
except json.JSONDecodeError as e:
yield f"JSON decoding error: {e.msg}"
except openai.OpenAIError as openai_err:
yield f"OpenAI error: {openai_err}"
except Exception as ex:
yield f"Unexpected error: {ex}"
chatbot = gr.Chatbot(label="Chatbot", scale=1, height=800, autoscroll=True)
chat_interface = gr.ChatInterface(
fn=get_fn,
chatbot=chatbot,
additional_inputs=[paper_content, hf_token_input, provider_dropdown, model_dropdown, provider_max_total_tokens],
type="tuples",
)
return chat_interface, chatbot
def paper_chat_tab(paper_id, paper_from, paper_central_df):
# A top-level button to "Chat with another paper" (visible only if paper_id is set)
# We'll place it above everything
chat_another_button = gr.Button("Chat with another paper", variant="primary", visible=False)
# First row with two columns
with gr.Row():
# Left column: Paper selection and display
with gr.Column(scale=1):
todays_date = datetime.today().strftime('%Y-%m-%d')
# Filter papers for today's date and having a paper_page
selectable_papers = paper_central_df.df_prettified
selectable_papers = selectable_papers[
selectable_papers['paper_page'].notna() &
(selectable_papers['paper_page'] != "") &
(selectable_papers['date'] == todays_date)
]
paper_choices = [(row['title'], row['paper_page']) for _, row in selectable_papers.iterrows()]
paper_choices = sorted(paper_choices, key=lambda x: x[0])
if not paper_choices:
paper_choices = [("No available papers for today", "")]
paper_select = gr.Dropdown(
label="Select a paper to chat with: (from today's 🤗 hugging face paper page)",
choices=[p[0] for p in paper_choices],
value=paper_choices[0][0] if paper_choices else None
)
# Add a textbox for user to enter a paper_id (arxiv_id)
paper_id_input = gr.Textbox(
label="Or enter a 🤗 paper_id directly",
placeholder="e.g. 1234.56789"
)
select_paper_button = gr.Button("Load this paper")
# Paper info display
content = gr.HTML(value="", elem_id="paper_info_card")
# Right column: Provider and model selection
with gr.Column(scale=1, visible=False) as provider_section:
gr.Markdown("### LLM Provider and Model")
provider_names = list(PROVIDERS.keys())
default_provider = provider_names[0]
default_type = gr.State(value=PROVIDERS[default_provider]["type"])
default_max_total_tokens = gr.State(value=PROVIDERS[default_provider]["max_total_tokens"])
provider_dropdown = gr.Dropdown(
label="Select Provider",
choices=provider_names,
value=default_provider
)
hf_token_input = gr.Textbox(
label=f"Enter your {default_provider} API token (optional)",
type="password",
placeholder=f"Enter your {default_provider} API token to avoid rate limits"
)
model_dropdown = gr.Dropdown(
label="Select Model",
choices=PROVIDERS[default_provider]['models'],
value=PROVIDERS[default_provider]['models'][0]
)
logo_html = gr.HTML(
value=f'<img src="{PROVIDERS[default_provider]["logo"]}" width="100px" />'
)
note_markdown = gr.Markdown(f"**Note:** This model is supported by {default_provider}.")
paper_content = gr.State()
# Now a new row, full width, for the chat
with gr.Row(visible=False) as chat_row:
with gr.Column():
# Create chat interface below the two columns
chat_interface, chatbot = create_chat_interface(provider_dropdown, model_dropdown, paper_content,
hf_token_input, default_type, default_max_total_tokens)
def update_provider(selected_provider):
provider_info = PROVIDERS[selected_provider]
models = provider_info['models']
logo_url = provider_info['logo']
max_total_tokens = provider_info['max_total_tokens']
model_dropdown_choices = gr.update(choices=models, value=models[0])
logo_html_content = f'<img src="{logo_url}" width="100px" />'
logo_html_update = gr.update(value=logo_html_content)
note_markdown_update = gr.update(value=f"**Note:** This model is supported by {selected_provider}.")
hf_token_input_update = gr.update(
label=f"Enter your {selected_provider} API token (optional)",
placeholder=f"Enter your {selected_provider} API token to avoid rate limits"
)
chatbot_reset = []
return model_dropdown_choices, logo_html_update, note_markdown_update, hf_token_input_update, provider_info[
'type'], max_total_tokens, chatbot_reset
provider_dropdown.change(
fn=update_provider,
inputs=provider_dropdown,
outputs=[model_dropdown, logo_html, note_markdown, hf_token_input, default_type, default_max_total_tokens,
chatbot],
queue=False
)
def update_paper_info(paper_id_value, paper_from_value, selected_model, old_content):
source_info = PAPER_SOURCES.get(paper_from_value, {})
fetch_info_fn = source_info.get("fetch_info")
fetch_pdf_fn = source_info.get("fetch_pdf")
if not fetch_info_fn or not fetch_pdf_fn:
return gr.update(value="<div>No information available.</div>"), None, []
title, authors, details = fetch_info_fn(paper_id_value)
if title is None and authors is None and details is None:
return gr.update(value="<div>No information could be retrieved.</div>"), None, []
text = fetch_pdf_fn(paper_id_value)
if text is None:
text = "Paper content could not be retrieved."
card_html = f"""
<div style="border:1px solid #ccc; border-radius:6px; background:#f9f9f9; padding:15px; margin-bottom:10px;">
<center><h3 style="margin-top:0; text-decoration:underline;">You are talking with:</h3></center>
<h3>{title}</h3>
<p><strong>Authors:</strong> {authors}</p>
<p>{details}</p>
</div>
"""
return gr.update(value=card_html), text, []
def select_paper(paper_title, paper_id_val):
# If user provided a paper_id_val (arxiv_id), use that
if paper_id_val and paper_id_val.strip():
# Check if it exists in df as a paper with paper_page not None
df = paper_central_df.df_raw
# We assume `arxiv_id` column exists in df (the user requested checking arxiv_id)
# If not present, you must ensure `paper_central_df` has `arxiv_id` column.
if 'arxiv_id' not in df.columns:
return gr.update(value="<div>arxiv_id column not found in dataset</div>"), None
found = df[
(df['arxiv_id'] == paper_id_val.strip()) &
df['paper_page'].notna() & (df['paper_page'] != "")
]
if len(found) > 0:
# We found a matching paper
return paper_id_val.strip(), "paper_page"
else:
# Not found, show error in content
# We can't directly show error from here. We'll return something that doesn't update states and rely on error message
# Let's return empty paper_id and paper_from but we must also show error in content after this call
return "", ""
else:
# fallback to dropdown selection
for t, ppage in paper_choices:
if t == paper_title:
return ppage, "paper_page"
return "", ""
select_paper_button.click(
fn=select_paper,
inputs=[paper_select, paper_id_input],
outputs=[paper_id, paper_from]
)
# After the paper_id/paper_from are set, we update paper info
paper_id_update = paper_id.change(
fn=update_paper_info,
inputs=[paper_id, paper_from, model_dropdown, content],
outputs=[content, paper_content, chatbot]
)
def toggle_provider_visibility(paper_id_value):
if paper_id_value and paper_id_value.strip():
return gr.update(visible=True)
else:
return gr.update(visible=False)
paper_id.change(
fn=toggle_provider_visibility,
inputs=[paper_id],
outputs=[provider_section]
)
paper_id.change(
fn=toggle_provider_visibility,
inputs=[paper_id],
outputs=[chat_row]
)
# Show/hide the "Chat with another paper" button
# If paper_id is set, show it. If not, hide it.
def toggle_chat_another_button(paper_id_value):
if paper_id_value and paper_id_value.strip():
return gr.update(visible=True)
else:
return gr.update(visible=False)
paper_id.change(
fn=toggle_chat_another_button,
inputs=[paper_id],
outputs=[chat_another_button]
)
# Button action to reset paper_id to None
def reset_paper_id():
# reset paper_id to ""
return "", "neurips", gr.update(value="<div></div>")
# When this button is clicked, we reset the paper_id and content
chat_another_button.click(
fn=reset_paper_id,
outputs=[paper_id, paper_from, content]
)
# If user tried an invalid paper_id_input, no error was shown yet:
# Actually we can show error message if no paper selected by updating after select_paper_button
# The select_paper returns paper_id/paper_from. If empty means error:
def check_paper_id_error(p_id, p_from):
# If p_id is empty after clicking load, show error message
if not p_id:
return gr.update(value="<div style='color:red;'>No valid paper found for the given input.</div>")
else:
return gr.update()
select_paper_button.click(
fn=check_paper_id_error,
inputs=[paper_id, paper_from],
outputs=[content],
queue=False
)
def main():
with gr.Blocks(css_paths="style.css") as demo:
paper_id = gr.Textbox(label="Paper ID", value="")
paper_from = gr.Radio(
label="Paper Source",
choices=["neurips", "paper_page"],
value="neurips"
)
class MockPaperCentral:
def __init__(self):
import pandas as pd
data = {
'date': [datetime.today().strftime('%Y-%m-%d')],
'paper_page': ['1234.56789'],
'arxiv_id': ['1234.56789'], # adding arxiv_id column as user requested
'title': ['An Example Paper']
}
self.df_prettified = pd.DataFrame(data)
paper_central_df = MockPaperCentral()
paper_chat_tab(paper_id, paper_from, paper_central_df)
demo.launch(ssr_mode=False)
if __name__ == "__main__":
main()
|