sanchit-gandhi's picture
fix typo
f0c3f08
raw
history blame
12.8 kB
import json
import re
from pathlib import Path
import requests
import streamlit as st
import yaml
from huggingface_hub import hf_hub_download
from streamlit_ace import st_ace
from streamlit_tags import st_tags
# exact same regex as in the Hub server. Please keep in sync.
REGEX_YAML_BLOCK = re.compile(r"---[\n\r]+([\S\s]*?)[\n\r]+---[\n\r]")
with open("languages.json") as f:
lang2name = json.load(f)
def try_parse_yaml(yaml_block):
try:
metadata = yaml.load(yaml_block, yaml.SafeLoader)
except yaml.YAMLError as e:
print("Error while parsing the metadata YAML:")
if hasattr(e, "problem_mark"):
if e.context is not None:
st.error(
str(e.problem_mark)
+ "\n "
+ str(e.problem)
+ " "
+ str(e.context)
+ "\nPlease correct the README.md and retry."
)
else:
st.error(
str(e.problem_mark)
+ "\n "
+ str(e.problem)
+ "\nPlease correct the README.md and retry."
)
else:
st.error(
"Something went wrong while parsing the metadata. "
"Make sure it's written according to the YAML spec!"
)
return None
return metadata
def main():
st.markdown("# The πŸ€— Speech Bench Metrics Editor")
st.markdown("This tool will help you report the evaluation metrics for all of your speech recognition models. "
"Follow the steps and watch your models appear on the [Speech Bench Leaderboard](https://huggingface.co/spaces/huggingface/hf-speech-bench)!")
st.markdown("## 1. Load your model's metadata")
st.markdown("Enter your model's path below.")
model_id = st.text_input("", placeholder="<username>/<model>")
if not model_id.strip():
st.stop()
try:
readme_path = hf_hub_download(model_id, filename="README.md")
except requests.exceptions.HTTPError:
st.error(
f"ERROR: https://huggingface.co/{model_id}/blob/main/README.md "
f"not found, make sure you've entered a correct model path and created a model card for it!"
)
st.stop()
content = Path(readme_path).read_text()
match = REGEX_YAML_BLOCK.search(content)
if match:
meta_yaml = match.group(1)
else:
st.error(
"ERROR: Couldn't find the metadata section inside your model's `README.md`. Do you have some basic metadata "
"enclosed in `---` as described in [the Hub documentation](https://huggingface.co/docs/hub/model-repos#model-card-metadata)?"
)
st.stop()
metadata = try_parse_yaml(meta_yaml)
if metadata is None:
st.stop()
return
else:
st.success("Successfully loaded the metadata!")
with st.expander("Inspect the parsed metadata for debugging"):
st.json(metadata)
st.markdown("## 2. Edit the data")
if "tags" not in metadata:
metadata["tags"] = []
metadata["tags"].append("hf-asr-leaderboard")
############################
# LANGUAGES
############################
st.markdown("### Language(s)")
st.markdown(
"For each spoken language that your model handles, enter an "
"[ISO 639-1](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes) language code, or "
"find an appropriate alternative from "
"[our list here](https://huggingface.co/spaces/huggingface/hf-speech-bench/blob/main/languages.json). "
"When in doubt, use the most generic language code, e.g. `en` instead of `en-GB` and `en-US`."
)
st.markdown("*Example*: `en, gsw, pt-BR`")
metadata["language"] = metadata["language"] if "language" in metadata else []
metadata["language"] = (
metadata["language"]
if isinstance(metadata["language"], list)
else [metadata["language"]]
)
languages = st_tags(
label="", text="add more if needed, and press enter", value=metadata["language"],
key=model_id+"_langs"
)
if not languages:
st.stop()
return
lang_names = [lang2name[lang] if lang in lang2name else lang for lang in languages]
st.markdown("These languages will be parsed by the leaderboard as: ")
st.code(", ".join(lang_names))
metadata["language"] = languages
############################
# TRAIN DATASETS
############################
st.markdown("### Training dataset(s)")
st.markdown(
"List the datasets that your model was **trained** on. "
"If the datasets aren't published on the Hub yet, just add their names anyway."
)
st.markdown(
"*Example*: `librispeech_asr, mozilla-foundation/common_voice_8_0, my_custom_youtube_dataset`"
)
if "datasets" not in metadata:
metadata["datasets"] = []
train_datasets = st_tags(
label="", text="add more if needed, and press enter", value=metadata["datasets"],
key=model_id+"_train_dataset"
)
if not train_datasets:
st.stop()
return
if "common_voice" in train_datasets:
st.warning(
"WARNING: `common_voice` is deprecated, please replace it with its equivalent: "
"`mozilla-foundation/common_voice_6_1`"
)
metadata["datasets"] = train_datasets
############################
# MODEL NAME
############################
st.markdown("### Model name")
st.markdown("Enter a pretty name for your model.")
st.markdown("*Example*: `XLS-R Wav2Vec2 LM Spanish by Jane Doe`")
if "model-index" not in metadata:
metadata["model-index"] = [{}]
if "name" not in ["model-index"][0]:
metadata["model-index"][0]["name"] = model_id.split("/")[-1]
model_name = st.text_input("", value=metadata["model-index"][0]["name"])
if not model_name:
st.stop()
return
metadata["model-index"][0]["name"] = model_name
############################
# EVAL RESULTS
############################
st.markdown("### Evaluation results")
st.markdown(
"To edit the metrics, you can either use the YAML editor below, or add new metrics using the handy "
"form under it."
)
if "results" not in metadata["model-index"][0]:
metadata["model-index"][0]["results"] = []
results_editor = st.empty()
with results_editor:
results_yaml = yaml.dump(
metadata["model-index"][0]["results"], sort_keys=False, line_break="\n"
)
results_yaml = st_ace(value=results_yaml, language="yaml")
metadata["model-index"][0]["results"] = try_parse_yaml(results_yaml)
dataset_path_kwargs = {}
dataset_name_kwargs = {}
if (
len(metadata["model-index"][0]["results"]) > 0
and "dataset" in metadata["model-index"][0]["results"][0]
):
if "type" in metadata["model-index"][0]["results"][0]["dataset"]:
dataset_path_kwargs["value"] = metadata["model-index"][0]["results"][0][
"dataset"
]["type"]
if "name" in metadata["model-index"][0]["results"][0]["dataset"]:
dataset_name_kwargs["value"] = metadata["model-index"][0]["results"][0][
"dataset"
]["name"]
with st.form(key="eval_form"):
dataset_path = st.text_input(
label="Dataset path / id",
placeholder="mozilla-foundation/common_voice_8_0",
**dataset_path_kwargs,
)
dataset_name = st.text_input(
label="A pretty name for the dataset. Examples: 'Common Voice 9.0 (French)', 'LibriSpeech (clean)'",
placeholder="Common Voice 9.0 (French)",
**dataset_name_kwargs,
)
dataset_config = st.text_input(
label="Dataset configuration. Examples: clean, other, en, pt-BR",
placeholder="en",
)
dataset_language_kwargs = {"value": languages[0]} if len(languages) > 0 else {}
dataset_language = st.text_input(
label="Dataset language. Examples: en, pt-BR",
placeholder="en",
**dataset_language_kwargs
)
dataset_split = st.text_input(
label="Dataset split. Examples: test, validation",
value="test",
placeholder="test",
)
metric2name = {"wer": "Word Error Rate", "cer": "Character Error Rate"}
metric_type = st.selectbox(
label="Metric",
options=["wer", "cer"],
format_func=lambda key: metric2name[key],
)
metric_name = st.text_input(
label="A pretty name for the metric. Example: Test WER (+LM)",
placeholder="Test WER",
value="Test WER",
)
metric_value = st.text_input(
label="Metric value. Use values in range 0.0 to 100.0.",
placeholder="12.34",
)
# try:
# metric_value = float(metric_value)
# except ValueError:
# st.error(
# f"Couldn't parse `{metric_value}`. Make sure it's a number from 0.0 to 100.0"
# )
submitted = st.form_submit_button("Add metric")
if (
submitted
and dataset_name
and dataset_path
and dataset_config
and dataset_split
and dataset_language
and metric_name
and metric_type
and metric_value
):
metric = {
"name": metric_name,
"type": metric_type,
"value": metric_value,
}
# first, try to find an existing dataset+config record to add a new metric to it
updated_existing = False
for existing_result in metadata["model-index"][0]["results"]:
existing_dataset = existing_result["dataset"]
if (
existing_dataset["type"] == dataset_path
and "config" in existing_dataset
and existing_dataset["config"] == dataset_config
and "split" in existing_dataset
and existing_dataset["split"] == dataset_split
):
if "metrics" not in existing_result:
existing_result["metrics"] = []
existing_result["metrics"].append(metric)
updated_existing = True
break
# if no dataset+config results found, create a new one
if not updated_existing:
result = {
"task": {
"name": "Automatic Speech Recognition",
"type": "automatic-speech-recognition",
},
"dataset": {
"name": dataset_name,
"type": dataset_path,
"config": dataset_config,
"split": dataset_split,
"args": {"language": dataset_language},
},
"metrics": [metric],
}
metadata["model-index"][0]["results"].append(result)
# update the code editor
with results_editor:
results_yaml = yaml.dump(
metadata["model-index"][0]["results"],
sort_keys=False,
line_break="\n",
)
results_yaml = st_ace(value=results_yaml, language="yaml")
metadata["model-index"][0]["results"] = try_parse_yaml(results_yaml)
st.success(
f"Added the metric for {dataset_path} - {dataset_config}! "
f"Check the result in the YAML editor above."
)
elif submitted:
st.error(
f"Make sure that you've filled the whole form before clicking 'Add metric'!"
)
############################
# FINAL YAML
############################
st.markdown("## 3. Copy the generated metadata")
st.markdown(
"Copy the YAML from below and replace the metadata at the top of your model's README.md here: "
f"https://huggingface.co/{model_id}/edit/main/README.md"
)
st.markdown("For more info on the metadata schema please refer to "
"https://raw.githubusercontent.com/huggingface/hub-docs/main/modelcard.md")
new_yaml = yaml.dump(metadata, sort_keys=False, line_break="\n")
st.markdown(f"```yaml\n---\n{new_yaml}---\n```")
if __name__ == "__main__":
main()