File size: 14,722 Bytes
0add2d4
 
fc95975
0add2d4
6303415
 
 
4bbaeac
 
0add2d4
4bbaeac
0add2d4
ffdfff7
fc95975
f622ed0
0add2d4
 
611e98e
 
 
 
 
 
 
0add2d4
6303415
0add2d4
 
 
 
 
 
6303415
611e98e
 
 
6303415
611e98e
 
6303415
 
 
 
 
611e98e
 
 
 
 
 
 
 
0add2d4
 
 
 
 
 
 
611e98e
 
 
 
 
 
0add2d4
 
 
611e98e
 
0add2d4
 
 
 
 
 
 
 
6303415
0add2d4
 
 
 
 
 
 
14574d7
ffdfff7
0add2d4
 
 
 
ffdfff7
0add2d4
 
6303415
0add2d4
 
ffdfff7
0add2d4
6303415
0add2d4
 
6303415
0add2d4
 
 
14574d7
 
ffdfff7
6303415
0add2d4
6303415
0add2d4
 
 
14574d7
 
 
 
ffdfff7
0add2d4
6303415
0add2d4
6303415
0add2d4
 
 
 
 
 
 
 
 
14574d7
ffdfff7
0add2d4
6303415
0add2d4
6303415
0add2d4
 
 
 
 
14574d7
ffdfff7
0add2d4
6303415
0add2d4
6303415
0add2d4
 
 
 
 
14574d7
0add2d4
 
6303415
0add2d4
6303415
0add2d4
 
 
 
 
14574d7
0add2d4
 
6303415
0add2d4
 
6303415
0add2d4
 
 
 
 
14574d7
0add2d4
 
 
 
 
14574d7
 
0add2d4
 
 
14574d7
 
 
 
 
 
 
 
 
611e98e
14574d7
f924b14
611e98e
 
 
 
14574d7
 
 
 
 
 
611e98e
 
 
 
14574d7
 
611e98e
 
 
 
 
 
 
14574d7
 
 
611e98e
 
 
 
14574d7
 
 
611e98e
 
 
 
14574d7
 
 
611e98e
 
 
 
14574d7
 
 
611e98e
 
 
 
14574d7
 
a446a8b
0add2d4
611e98e
 
a446a8b
611e98e
 
 
a446a8b
611e98e
 
 
0add2d4
611e98e
 
 
a446a8b
611e98e
a446a8b
611e98e
 
 
 
0add2d4
611e98e
 
 
 
 
 
 
 
0add2d4
611e98e
 
 
 
 
 
 
 
0add2d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
611e98e
 
0add2d4
 
611e98e
 
0add2d4
611e98e
0add2d4
611e98e
0add2d4
611e98e
 
 
 
 
0add2d4
611e98e
 
 
 
 
 
0add2d4
 
 
 
 
 
 
 
 
 
 
 
6303415
0add2d4
 
 
 
 
3fd19c1
0add2d4
ffdfff7
 
6303415
189d6aa
 
07c617e
 
0add2d4
ffdfff7
0add2d4
611e98e
 
 
 
 
 
0add2d4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
# Run with: streamlit run visualization.py

import streamlit as st

import os

import base64
import json
import pandas as pd

import numpy as np

import matplotlib.pyplot as plt


class Visualization:
    def __init__(
        self,
        path_instructions,
        path_data,
        lang,
        num_docs,
        num_docs_for_words,
        max_len_text_display,
    ):
        self.path_instructions = path_instructions
        self.path_data = path_data
        self.lang = lang
        self.num_docs = num_docs
        self.num_docs_for_words = num_docs_for_words
        self.max_len_text_display = max_len_text_display

    def preamble(self):
        st.markdown(
            "Before diving into this demo, you might want to take a look at how the filtering pipeline of OSCAR looks like in more detail."
        )

        def get_binary_file_downloader_html(bin_file, file_label="File"):
            with open(bin_file, "rb") as f:
                data = f.read()
            bin_str = base64.b64encode(data).decode()
            href = f'<a href="data:application/octet-stream;base64,{bin_str}" download="{os.path.basename(bin_file)}">{file_label}</a>'
            return href

        st.markdown(
            get_binary_file_downloader_html(
                self.path_instructions,
                "Download the filtering pipeline of OSCAR as pdf",
            ),
            unsafe_allow_html=True,
        )

    def open_data(self):
        with open(self.path_data) as json_file:
            data = json.load(json_file)

        self.num_docs = min(self.num_docs, len(data))
        self.num_docs_for_words = min(self.num_docs_for_words, len(data))

        if "words" in data[0]:
            words = [doc["words"] for doc in data[: self.num_docs_for_words]]
            words = [word for doc in words for word in doc]
            self.words = pd.DataFrame(words)
        else:
            self.words = None

        docs = data[: self.num_docs]
        for doc in docs:
            if not (self.words is None):
                del doc["words"]
            if len(doc["text"]) > self.max_len_text_display:
                doc["text"] = (
                    doc["text"][: self.max_len_text_display]
                    + " [...] [THIS LONG TEXT HAS BEEN TRUNCATED FOR DISPLAY REASONS]"
                )
        self.docs = pd.DataFrame(docs)

    def set_title(self):
        st.title(f"{self.num_docs} {self.lang} documents from OSCAR with their stats.")

    def filtering_of_docs(self):
        st.sidebar.subheader("Parameters of the filtering on documents")

        def set_sliders(docs):
            columns = list(docs)
            keys = []
            conds = {}

            def get_cond(key, cutoff, max_cutoff):
                if max_cutoff:
                    return self.docs[key] <= cutoff
                return self.docs[key] >= cutoff

            def print_discared_by_cond(cond):
                st.sidebar.caption(
                    f"{(len(cond) - np.sum(1*cond)) / len(cond) * 100:.2f}% of the total is discarded with this filter."
                )
                st.sidebar.caption("---------")

            if "number_words" in columns:
                cutoff_def = "If the number of words of a document is lower than this number, the document is removed."
                max_nb_words = int(np.max(docs["number_words"])) + 1
                cutoff_min_number_words = st.sidebar.slider(
                    cutoff_def, 0, min(max_nb_words, 500), 0
                )
                new_key = ("number_words", cutoff_min_number_words, False)
                keys.append(new_key)
                cond_1 = get_cond(new_key[0], new_key[1], new_key[2])
                print_discared_by_cond(cond_1)

                cutoff_def = "If the number of words of a document is higher than this number, the document is removed."
                cutoff_max_number_words = st.sidebar.slider(
                    cutoff_def, 0, max_nb_words, max_nb_words
                )
                new_key = ("number_words", cutoff_max_number_words, True)
                keys.append(new_key)
                cond_2 = get_cond(new_key[0], new_key[1], new_key[2])
                print_discared_by_cond(cond_2)

                conds["number_words"] = [cond_1, cond_2]

            if "special_characters_ratio" in columns:
                cutoff_def = "If the special characters ratio of a document is higher than this number, the document is removed."
                cutoff_special_characters_ratio = st.sidebar.slider(
                    cutoff_def, 0.0, 1.0, 1.0, step=0.01
                )
                new_key = (
                    "special_characters_ratio",
                    cutoff_special_characters_ratio,
                    True,
                )
                keys.append(new_key)
                cond = get_cond(new_key[0], new_key[1], new_key[2])
                print_discared_by_cond(cond)
                conds["special_characters_ratio"] = [cond]

            if "stopwords_ratio" in columns:
                cutoff_def = "If the stop words ratio of a document is lower than this number, the document is removed."
                cutoff_stopwords_ratio = st.sidebar.slider(
                    cutoff_def, 0.0, 1.0, 0.0, step=0.01
                )
                new_key = ("stopwords_ratio", cutoff_stopwords_ratio, False)
                keys.append(new_key)
                cond = get_cond(new_key[0], new_key[1], new_key[2])
                print_discared_by_cond(cond)
                conds["stopwords_ratio"] = [cond]

            if "badwords_ratio" in columns:
                cutoff_def = "If the bad words ratio of a document is higher than this number, the document is removed."
                cutoff_badwords_ratio = st.sidebar.slider(
                    cutoff_def, 0.0, 1.0, 1.0, step=0.01
                )
                new_key = ("badwords_ratio", cutoff_badwords_ratio, True)
                keys.append(new_key)
                cond = get_cond(new_key[0], new_key[1], new_key[2])
                print_discared_by_cond(cond)
                conds["badwords_ratio"] = [cond]

            if "lang_id_score" in columns:
                cutoff_def = "If the confidence score for the language identification prediction of a document is lower than this number, the document is removed."
                cutoff_lang_id_score = st.sidebar.slider(
                    cutoff_def, 0.0, 1.0, 0.0, step=0.01
                )
                new_key = ("lang_id_score", cutoff_lang_id_score, False)
                keys.append(new_key)
                cond = get_cond(new_key[0], new_key[1], new_key[2])
                print_discared_by_cond(cond)
                conds["lang_id_score"] = [cond]

            if "perplexity_score" in columns:
                cutoff_def = "If the perplexity score of a document is higher than this number, the document is removed."
                max_pp = int(np.max(docs["perplexity_score"])) + 1
                cutoff_perplexity_score = st.sidebar.slider(
                    cutoff_def, 0, max_pp, max_pp
                )
                new_key = ("perplexity_score", cutoff_perplexity_score, True)
                keys.append(new_key)
                cond = get_cond(new_key[0], new_key[1], new_key[2])
                print_discared_by_cond(cond)
                conds["perplexity_score"] = [cond]

            return keys, conds

        self.keys, conds = set_sliders(self.docs)

        all_conds = [subcond for cond in list(conds.values()) for subcond in cond]
        all_conds = np.all(all_conds, axis=0)

        st.header("Filtering on documents")

        def display_dataset(cond, description):
            displayed_docs = self.docs.loc[cond]
            st.subheader(
                f"{description}: {len(displayed_docs)} docs ({len(displayed_docs) / self.num_docs * 100:.2f}%)"
            )
            st.markdown(
                "Click on a column to sort by it, place the cursor on the text to display it."
            )
            st.dataframe(displayed_docs)

        display_dataset(np.invert(all_conds), "Discarded documents")

        # st.subheader("Display discarded documents by filter")
        display_discarded_documents_by_filter = st.checkbox(
            "Display discarded documents by filter"
        )

        if display_discarded_documents_by_filter:
            columns = list(self.docs)

            if "number_words" in columns:
                cond_filter = np.invert(np.all(conds["number_words"], axis=0))
                display_dataset(
                    cond_filter,
                    "Discarded documents for the filter on the number of words",
                )

            if "special_characters_ratio" in columns:
                cond_filter = np.invert(
                    np.all(conds["special_characters_ratio"], axis=0)
                )
                display_dataset(
                    cond_filter,
                    "Discarded documents for the filter on the special characters ratio",
                )

            if "stopwords_ratio" in columns:
                cond_filter = np.invert(np.all(conds["stopwords_ratio"], axis=0))
                display_dataset(
                    cond_filter,
                    "Discarded documents for the filter on the stop words ratio",
                )

            if "badwords_ratio" in columns:
                cond_filter = np.invert(np.all(conds["badwords_ratio"], axis=0))
                display_dataset(
                    cond_filter,
                    "Discarded documents for the filter on the bad words ratio",
                )

            if "lang_id_score" in columns:
                cond_filter = np.invert(np.all(conds["lang_id_score"], axis=0))
                display_dataset(
                    cond_filter,
                    "Discarded documents for the filter on the language identification confidence score",
                )

            if "perplexity_score" in columns:
                cond_filter = np.invert(np.all(conds["perplexity_score"], axis=0))
                display_dataset(
                    cond_filter,
                    "Discarded documents for the filter on the perplexity score",
                )

        display_dataset(all_conds, "Retained documents")

    def filtering_of_words(self):
        if not (self.words is None):
            st.sidebar.subheader("Parameter of the filtering on words")

            cutoff_def = "If the length of a word is higher than this number, the word is removed."
            max_len_word = min(int(np.max(self.words["len_word"])) + 1, 200)
            cutoff_word = st.sidebar.slider(cutoff_def, 0, max_len_word, max_len_word)

            incorrect_substrings = st.sidebar.checkbox(
                "Remove words with incorrect substrings."
            )

            cond_words = self.words["len_word"] <= cutoff_word
            if incorrect_substrings:
                cond_words = cond_words & np.invert(self.words["incorrect_substring"])

            st.header("Filtering on words")

            st.markdown(
                f"Since the number of words is way larger than the number of documents, "
                f"we consider in this section words for the first {self.num_docs_for_words} documents only."
            )

            discarded_words = self.words.loc[np.invert(cond_words)]
            st.subheader(
                f"Discarded words: {len(discarded_words)} words ({len(discarded_words) / len(self.words) * 100:.2f}%)"
            )
            st.markdown(
                "Click on a column to sort by it, place the cursor on the text to display it."
            )
            st.dataframe(discarded_words)

            retained_words = self.words.loc[cond_words]
            st.subheader(
                f"Retained words: {len(retained_words)} words ({len(retained_words) / len(self.words) * 100:.2f}%)"
            )
            st.markdown(
                "Click on a column to sort by it, place the cursor on the text to display it."
            )
            st.dataframe(retained_words)

    def plot_distributions_filtering_parameters(self):
        st.header("Distributions of the filtering parameters")

        display_distributions = st.checkbox("Display distributions")

        if display_distributions:

            def plot_hist(dataframe, key, num_bins=50):
                st.subheader(" ".join(key.split("_")))
                hist_values = dataframe[key].values
                max_range = np.max(hist_values)
                hist_values = np.histogram(
                    hist_values, bins=num_bins, range=(0, max_range)
                )[0]
                st.bar_chart(hist_values)
                st.markdown(f"Each bin is of size: {max_range/num_bins}.")

            for key in list({el[0]: None for el in self.keys}):
                plot_hist(self.docs, key)

            if not (self.words is None):
                plot_hist(self.words, "len_word")

    def plot_zipf_law(self):
        if not (self.words is None):
            st.header("Zipf's Law")

            display_zipf_law = st.checkbox("Display Zipf's Law")

            if display_zipf_law:

                freq_words = {}
                for _, row in self.words.iterrows():
                    freq_words[row["word"]] = freq_words.get(row["word"], 0) + 1
                freq_words = np.array(list(freq_words.values()))
                freq_words = -np.sort(-freq_words)

                fig, ax = plt.subplots()
                ax.loglog(freq_words)
                ax.set_title("Zipf's Law")
                ax.set_xlabel("$i$-th most frequent word")
                ax.set_ylabel("frequency in the documents")
                st.pyplot(fig)

    def download_data(self):
        st.header("Download data")

        with open(self.path_data) as json_file:
            btn = st.download_button(
                label="Download data as json",
                data=json_file,
                file_name="data.json",
            )

    def visualization(self):
        self.preamble()
        self.open_data()
        self.set_title()
        self.filtering_of_docs()
        self.filtering_of_words()
        self.plot_distributions_filtering_parameters()
        #self.plot_zipf_law()
        self.download_data()


path_instructions = "./filtering_pipeline_oscar.pdf"
path_data = "./en_examples_with_stats.json"
lang = "English"
num_docs = 5000
num_docs_for_words = 500
max_len_text_display = 10000

visualization = Visualization(
    path_instructions,
    path_data,
    lang,
    num_docs,
    num_docs_for_words,
    max_len_text_display,
)
visualization.visualization()