teven's picture
better sliders
64ce142
raw
history blame
5.45 kB
import streamlit as st
import json
import pandas as pd
import math
import numpy as np
import matplotlib.pyplot as plt
def visualization(path_data, lang, num_docs, num_docs_for_words):
with open(path_data) as json_file:
data = json.load(json_file)
num_docs = min(num_docs, len(data))
st.title(f"{num_docs} {lang} documents from Oscar with their stats.")
sentences = [doc["text"].split(" ") for doc in data[:num_docs_for_words]]
words = set([word for sentence in sentences for word in sentence])
words_data = [{"len_word": len(word), "word": word} for word in words]
words_data = pd.DataFrame(words_data)
data = data[:num_docs]
data = pd.DataFrame(data)
columns = list(data)
keys = []
values = {}
st.header("Filtering based on document content")
if "special_%" in columns:
special_ratio = st.sidebar.slider(
"% filtered by special characters ratio", 0.0, 50.0, 0.0, step=1.0
)
cutoff_index = max(0, math.floor((100 - special_ratio) * len(data.index) / 100) - 1)
special_cutoff = np.partition(data["special_%"], cutoff_index)[cutoff_index]
st.sidebar.text(f"Kept text with <{special_cutoff:.1f}% special chars")
keys.append(("special_%", special_cutoff, True))
if "stop_%" in columns:
stop_ratio = st.sidebar.slider(
"% filtered by stop word ratio", 0.0, 50.0, 0.0, step=1.0
)
cutoff_index = max(0, math.floor(stop_ratio * len(data.index) / 100) - 1)
stop_cutoff = np.partition(data["stop_%"], cutoff_index)[cutoff_index]
st.sidebar.text(f"Kept text with >{stop_cutoff:.1f}% stop words")
keys.append(("stop_%", stop_cutoff, False))
# def recalculate_bad_words(file):
#
# def bad_word_ratio(text: str, bad_word_list):
# return sum(
# [text.count(bad_word.decode()) * len(bad_word.decode().split()) for bad_word in bad_word_list]) / len(
# text.split())
#
# bad_word_list = file.readlines()
#
# bad_word_ratios = [bad_word_ratio(text, bad_word_list) * 100 for text in data["text"]]
# data["bad_%"] = bad_word_ratios
#
# bad_word_file = st.sidebar.file_uploader("Upload your own list of bad words (1 word per line)")
#
# if bad_word_file is not None:
# recalculate_bad_words(bad_word_file)
if "bad_%" in columns:
bad_ratio = st.sidebar.slider(
"% filtered by badwords ratio", 0.0, 50.0, 0.0, step=0.1
)
bad_index = max(0, math.floor((100 - bad_ratio) * len(data.index) / 100) - 1)
bad_cutoff = np.partition(data["bad_%"], bad_index)[bad_index]
st.sidebar.text(f"Kept text with <{bad_cutoff:.1f}% bad words")
keys.append(("bad_%", bad_cutoff, True))
if "perplexity" in columns:
ppl_ratio = st.sidebar.slider(
"% filtered by perplexity", 0.0, 50.0, 0.0, step=1.0
)
ppl_index = max(0, math.floor((100 - ppl_ratio) * len(data.index) / 100) - 1)
ppl_cutoff = np.partition(data["perplexity"], ppl_index)[ppl_index]
st.sidebar.text(f"Kept text with <{ppl_cutoff:.0f} perplexity")
keys.append(("perplexity", ppl_cutoff, True))
cond = [
(data[key] <= cutoff) if max_cutoff else (data[key] >= cutoff)
for key, cutoff, max_cutoff in keys
]
cond = np.all(cond, axis=0)
data_not_keep = data.loc[np.invert(cond)]
st.subheader("Filtered data")
st.markdown("Click on a column to sort by it, place the cursor on the text to display it.")
st.dataframe(data_not_keep)
data_keep = data.loc[cond]
st.subheader("Kept data")
st.markdown("Click on a column to sort by it, place the cursor on the text to display it.")
st.dataframe(data_keep)
# def plot_hist(dataframe, key, num_bins=50):
# st.subheader(" ".join(key.split("_")))
# hist_values = dataframe[key].values
# max_range = np.max(hist_values)
# hist_values = np.histogram(hist_values, bins=num_bins, range=(0, max_range))[0]
# st.bar_chart(hist_values)
# st.markdown(f"Each bin is of size: {max_range/num_bins}.")
# for key, _, _ in keys:
# plot_hist(data, key)
st.header("Filtering links and concatenated words")
max_len_word = int(np.max(words_data["len_word"])) + 1
cutoff_word = st.sidebar.slider("Word length cutoff", 0, max_len_word, max_len_word)
cond_words = words_data["len_word"] <= cutoff_word
words_keep = words_data.loc[cond_words]
st.subheader(f"Words that we keep (for {num_docs_for_words} documents)")
st.markdown("Click on a column to sort by it, place the cursor on the text to display it.")
st.dataframe(words_keep)
words_not_keep = words_data.loc[np.invert(cond_words)]
st.subheader(f"Words that are thrown away (for {num_docs_for_words} documents)")
st.markdown("Click on a column to sort by it, place the cursor on the text to display it.")
st.dataframe(words_not_keep)
st.header("Download data")
with open(path_data) as json_file:
btn = st.download_button(
label="Download data as json",
data=json_file,
file_name="data.json",
)
path_data = "./en_examples_with_stats_no_small_docs.json"
lang = "English"
num_docs = 5000
num_docs_for_words = 500
visualization(path_data, lang, num_docs, num_docs_for_words)