Spaces:
Runtime error
Runtime error
# Run with: streamlit run visualization.py | |
import streamlit as st | |
import os | |
from io import StringIO | |
import base64 | |
import json | |
import pandas as pd | |
pd.options.mode.chained_assignment = None | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from filtering import LoadParameters, ModifyingDocuments, Filtering | |
from languages_id import langs_id | |
class Visualization_for_lang: | |
def __init__( | |
self, | |
path_data, | |
lang, | |
num_docs, | |
num_docs_for_words, | |
max_len_text_display, | |
lang_dataset_id, | |
path_fasttext_model, | |
path_sentencepiece_model, | |
path_kenlm_model, | |
): | |
self.path_data = path_data | |
self.lang = lang | |
self.num_docs = num_docs | |
self.num_docs_for_words = num_docs_for_words | |
self.max_len_text_display = max_len_text_display | |
self.lang_dataset_id = lang_dataset_id | |
self.param = LoadParameters.load_parameters(lang_dataset_id) | |
self.stopwords = LoadParameters.load_stopwords(lang_dataset_id) | |
self.flagged_words = LoadParameters.load_flagged_words(lang_dataset_id) | |
self.model_lang_id = LoadParameters.load_model_lang_id( | |
lang_dataset_id, path_fasttext_model | |
) | |
self.sentencepiece_model = LoadParameters.load_sentencepiece_model( | |
lang_dataset_id, path_sentencepiece_model | |
) | |
self.sentencepiece_model_tok = ( | |
self.sentencepiece_model if self.param["tokenization"] else None | |
) | |
self.kenlm_model = LoadParameters.load_kenlm_model( | |
lang_dataset_id, path_kenlm_model | |
) | |
def set_title(self): | |
st.title(f"Filtering visualization for {self.lang}") | |
def open_data(self): | |
with open(self.path_data) as json_file: | |
data = json.load(json_file) | |
self.num_docs = min(self.num_docs, len(data)) | |
self.num_docs_for_words = min(self.num_docs_for_words, len(data)) | |
if "words" in data[0]: | |
words = [doc["words"] for doc in data[: self.num_docs_for_words]] | |
words = [word for doc in words for word in doc] | |
self.words = pd.DataFrame(words) | |
else: | |
self.words = None | |
docs = data[: self.num_docs] | |
for doc in docs: | |
if not (self.words is None): | |
del doc["words"] | |
if len(doc["text"]) > self.max_len_text_display: | |
doc["text"] = ( | |
doc["text"][: self.max_len_text_display] | |
+ " [...] [THIS LONG TEXT HAS BEEN TRUNCATED FOR DISPLAY REASONS]" | |
) | |
self.docs_checkpoint = pd.DataFrame(docs) | |
self.docs = self.docs_checkpoint | |
def print_discarded_by_cond(cond): | |
st.caption( | |
f"{(len(cond) - np.sum(1*cond)) / len(cond) * 100:.2f}% of the total is discarded with this filter." | |
) | |
def plot_hist(dataframe, key, num_bins=50): | |
checkbox = st.checkbox( | |
"Diplay distribution", value=True, key=f"display_distribution_{key[0]}" | |
) | |
if checkbox: | |
fig, ax = plt.subplots() | |
val = dataframe[key[0]].values | |
if np.median(val) != 0: | |
val = val[ | |
abs(val - np.median(val)) | |
< 9 * np.median(np.absolute(val - np.median(val))) | |
] | |
ax.hist(val, bins=num_bins, density=True) | |
ax.set_title(" ".join(key[0].split("_"))) | |
ax.axvline(x=key[1], color="r", linestyle="dashed") | |
st.pyplot(fig) | |
def display_dataset(dataframe, cond, description, type_of_examples): | |
displayed_examples = dataframe.loc[cond] | |
st.subheader( | |
f"{description}: {len(displayed_examples)} {type_of_examples} ({len(displayed_examples) / len(dataframe.index) * 100:.2f}%)" | |
) | |
st.markdown( | |
"Click on a column to sort by it, place the cursor on the text to display it." | |
) | |
st.dataframe(displayed_examples) | |
def filtering_of_docs(self): | |
def set_sliders(): | |
columns = list(self.docs) | |
keys = [] | |
conds = {} | |
def get_cond(key, cutoff, max_cutoff): | |
if max_cutoff: | |
return self.docs[key] <= cutoff | |
return self.docs[key] >= cutoff | |
if "number_words" in columns: | |
with st.sidebar.expander("Number of words"): | |
cutoff_def = "If the number of words of a document is lower than this number, the document is removed." | |
max_nb_words = int(np.max(self.docs["number_words"])) + 1 | |
cutoff_min_number_words = st.slider( | |
cutoff_def, 0, min(max_nb_words, 500), 0 | |
) | |
new_key = ("number_words", cutoff_min_number_words, False) | |
keys.append(new_key) | |
Visualization_for_lang.plot_hist(self.docs, new_key) | |
cond_1 = get_cond(new_key[0], new_key[1], new_key[2]) | |
Visualization_for_lang.print_discarded_by_cond(cond_1) | |
cutoff_def = "If the number of words of a document is higher than this number, the document is removed." | |
cutoff_max_number_words = st.slider( | |
cutoff_def, 0, max_nb_words, max_nb_words | |
) | |
new_key = ("number_words", cutoff_max_number_words, True) | |
keys.append(new_key) | |
cond_2 = get_cond(new_key[0], new_key[1], new_key[2]) | |
Visualization_for_lang.print_discarded_by_cond(cond_2) | |
conds["number_words"] = [cond_1, cond_2] | |
if "character_repetition_ratio" in columns: | |
with st.sidebar.expander("Character repetition ratio"): | |
val_repetitions_lengths = list( | |
self.docs["character_repetition_ratio"].iloc[0].keys() | |
) | |
default_index = ( | |
val_repetitions_lengths.index("10") | |
if "10" in val_repetitions_lengths | |
else 0 | |
) | |
label_selectbox = "Length of repetitions in characters (that will influence the character repetition ratio)." | |
repetitions_length = st.selectbox( | |
label=label_selectbox, | |
options=val_repetitions_lengths, | |
index=default_index, | |
) | |
st.caption( | |
"Choosing a higher or lower number does not mean that the filtering " | |
"is stronger or weaker. Be careful, choosing a low number (below 5 for languages like English) " | |
"tends to associate a high character repetition ratio to very long documents (like book chapters), but with " | |
"few or no repetitions, simply because their length gives them more diversity, and we do " | |
"not want to discard such documents. It is generally better to increase this number, so that false " | |
"positives are very short documents (which we want to delete anyway) rather than long ones. However, " | |
"a low number can be useful for Chinese, where a character can designate a whole word." | |
) | |
self.docs["character_repetition_ratio"] = self.docs_checkpoint[ | |
"character_repetition_ratio" | |
] | |
for i in range(len(self.docs["character_repetition_ratio"])): | |
self.docs["character_repetition_ratio"].iloc[i] = self.docs[ | |
"character_repetition_ratio" | |
].iloc[i][repetitions_length] | |
cutoff_def = "If the character repetition ratio of a document is higher than this number, the document is removed." | |
cutoff_character_repetition_ratio = st.slider( | |
cutoff_def, 0.0, 1.0, 1.0, step=0.01 | |
) | |
new_key = ( | |
"character_repetition_ratio", | |
cutoff_character_repetition_ratio, | |
True, | |
repetitions_length, | |
) | |
keys.append(new_key) | |
Visualization_for_lang.plot_hist(self.docs, new_key) | |
cond = get_cond(new_key[0], new_key[1], new_key[2]) | |
Visualization_for_lang.print_discarded_by_cond(cond) | |
conds["character_repetition_ratio"] = [cond] | |
if "word_repetition_ratio" in columns: | |
with st.sidebar.expander("Word repetition ratio"): | |
val_repetitions_lengths = list( | |
self.docs["word_repetition_ratio"].iloc[0].keys() | |
) | |
default_index = ( | |
val_repetitions_lengths.index("5") | |
if "5" in val_repetitions_lengths | |
else 0 | |
) | |
label_selectbox = "Length of repetitions in words (that will influence the word repetition ratio)." | |
repetitions_length = st.selectbox( | |
label=label_selectbox, | |
options=val_repetitions_lengths, | |
index=default_index, | |
) | |
st.caption( | |
"Choosing a higher or lower number does not mean that the filtering " | |
"is stronger or weaker. Be careful, choosing a low number (like 3) could " | |
"tend to associate a high word repetition ratio to very long documents (like book chapters), but with " | |
"few or no repetitions, simply because their length gives them more diversity, and we do " | |
"not want to discard such documents. It is generally better to increase a bit this number, so that false " | |
"positives are very short documents (which we want to delete anyway) rather than long ones." | |
) | |
self.docs["word_repetition_ratio"] = self.docs_checkpoint[ | |
"word_repetition_ratio" | |
] | |
for i in range(len(self.docs["word_repetition_ratio"])): | |
self.docs["word_repetition_ratio"].iloc[i] = self.docs[ | |
"word_repetition_ratio" | |
].iloc[i][repetitions_length] | |
cutoff_def = "If the word repetition ratio of a document is higher than this number, the document is removed." | |
cutoff_word_repetition_ratio = st.slider( | |
cutoff_def, 0.0, 1.0, 1.0, step=0.01 | |
) | |
new_key = ( | |
"word_repetition_ratio", | |
cutoff_word_repetition_ratio, | |
True, | |
repetitions_length, | |
) | |
keys.append(new_key) | |
Visualization_for_lang.plot_hist(self.docs, new_key) | |
cond = get_cond(new_key[0], new_key[1], new_key[2]) | |
Visualization_for_lang.print_discarded_by_cond(cond) | |
conds["word_repetition_ratio"] = [cond] | |
if "special_characters_ratio" in columns: | |
with st.sidebar.expander("Special characters ratio"): | |
cutoff_def = "If the special characters ratio of a document is higher than this number, the document is removed." | |
cutoff_special_characters_ratio = st.slider( | |
cutoff_def, 0.0, 1.0, 1.0, step=0.01 | |
) | |
new_key = ( | |
"special_characters_ratio", | |
cutoff_special_characters_ratio, | |
True, | |
) | |
keys.append(new_key) | |
Visualization_for_lang.plot_hist(self.docs, new_key) | |
cond = get_cond(new_key[0], new_key[1], new_key[2]) | |
Visualization_for_lang.print_discarded_by_cond(cond) | |
conds["special_characters_ratio"] = [cond] | |
if "stopwords_ratio" in columns: | |
with st.sidebar.expander("Stop words ratio"): | |
stopwords_file = st.file_uploader( | |
"Upload your own list of stop words (one per line). If there is none, the default one is used." | |
) | |
if stopwords_file: | |
new_stopwords = StringIO( | |
stopwords_file.getvalue().decode("utf-8") | |
).read() | |
new_stopwords = set(new_stopwords.split("\n")) | |
self.docs["stopwords_ratio"] = self.docs_checkpoint[ | |
"stopwords_ratio" | |
] | |
for i in range(len(self.docs["stopwords_ratio"])): | |
self.docs["stopwords_ratio"].iloc[ | |
i | |
] = Filtering.compute_stopwords_ratio( | |
self.docs["text"].iloc[i], | |
self.sentencepiece_model_tok, | |
self.param["strip_characters"], | |
self.param["cond_words_augmentation"], | |
self.param["words_augmentation_group_sizes"], | |
self.param["words_augmentation_join_char"], | |
new_stopwords, | |
) | |
cutoff_def = "If the stop words ratio of a document is lower than this number, the document is removed." | |
cutoff_stopwords_ratio = st.slider( | |
cutoff_def, 0.0, 1.0, 0.0, step=0.01 | |
) | |
new_key = ("stopwords_ratio", cutoff_stopwords_ratio, False) | |
keys.append(new_key) | |
Visualization_for_lang.plot_hist(self.docs, new_key) | |
cond = get_cond(new_key[0], new_key[1], new_key[2]) | |
Visualization_for_lang.print_discarded_by_cond(cond) | |
conds["stopwords_ratio"] = [cond] | |
if "flagged_words_ratio" in columns: | |
with st.sidebar.expander("Flagged words ratio"): | |
flagged_words_file = st.file_uploader( | |
"Upload your own list of flagged words (one per line). If there is none, the default one is used." | |
) | |
if flagged_words_file: | |
new_flagged_words = StringIO( | |
flagged_words_file.getvalue().decode("utf-8") | |
).read() | |
new_flagged_words = set(new_flagged_words.split("\n")) | |
self.docs["flagged_words_ratio"] = self.docs_checkpoint[ | |
"flagged_words_ratio" | |
] | |
for i in range(len(self.docs["flagged_words_ratio"])): | |
self.docs["flagged_words_ratio"].iloc[ | |
i | |
] = Filtering.compute_flagged_words_ratio( | |
self.docs["text"].iloc[i], | |
self.sentencepiece_model_tok, | |
self.param["strip_characters"], | |
self.param["cond_words_augmentation"], | |
self.param["words_augmentation_group_sizes"], | |
self.param["words_augmentation_join_char"], | |
new_flagged_words, | |
) | |
cutoff_def = "If the flagged words ratio of a document is higher than this number, the document is removed." | |
max_fwr = np.max(self.docs["flagged_words_ratio"]) | |
max_fwr = np.ceil(max_fwr * 1000) / 1000 | |
max_fwr = float(max_fwr) | |
cutoff_flagged_words_ratio = st.slider( | |
cutoff_def, | |
0.000, | |
max_fwr, | |
max_fwr, | |
step=0.001, | |
format="%f", | |
) | |
new_key = ("flagged_words_ratio", cutoff_flagged_words_ratio, True) | |
keys.append(new_key) | |
Visualization_for_lang.plot_hist(self.docs, new_key) | |
cond = get_cond(new_key[0], new_key[1], new_key[2]) | |
Visualization_for_lang.print_discarded_by_cond(cond) | |
conds["flagged_words_ratio"] = [cond] | |
if "lang_id_score" in columns: | |
with st.sidebar.expander("Language ID confidence score"): | |
cutoff_def = "If the confidence score for the language identification prediction of a document is lower than this number, the document is removed." | |
cutoff_lang_id_score = st.slider( | |
cutoff_def, 0.0, 1.0, 0.0, step=0.01 | |
) | |
new_key = ("lang_id_score", cutoff_lang_id_score, False) | |
keys.append(new_key) | |
Visualization_for_lang.plot_hist(self.docs, new_key) | |
cond = get_cond(new_key[0], new_key[1], new_key[2]) | |
Visualization_for_lang.print_discarded_by_cond(cond) | |
conds["lang_id_score"] = [cond] | |
if "perplexity_score" in columns: | |
with st.sidebar.expander("Perplexity score"): | |
cutoff_def = "If the perplexity score of a document is higher than this number, the document is removed." | |
max_pp = int(np.max(self.docs["perplexity_score"])) + 1 | |
cutoff_perplexity_score = st.slider(cutoff_def, 0, max_pp, max_pp) | |
new_key = ("perplexity_score", cutoff_perplexity_score, True) | |
keys.append(new_key) | |
Visualization_for_lang.plot_hist(self.docs, new_key) | |
cond = get_cond(new_key[0], new_key[1], new_key[2]) | |
Visualization_for_lang.print_discarded_by_cond(cond) | |
conds["perplexity_score"] = [cond] | |
return keys, conds | |
with st.expander( | |
f"Filtering on documents, for {self.num_docs} {self.lang} documents" | |
): | |
st.header( | |
f"Filtering on documents, for {self.num_docs} {self.lang} documents" | |
) | |
if "labels" in list(self.docs): | |
chosen_label = st.selectbox( | |
label="Consider only documents that include the following label", | |
options=[ | |
"All", | |
"NA: Narrative", | |
"IN: Informational Description", | |
"OP: Opinion", | |
"ID: Interactive Discussion", | |
"HI: How-to/Instruction", | |
"IP: Informational Persuasion", | |
"LY: Lyrical", | |
"SP: Spoken", | |
], | |
) | |
chosen_label = chosen_label.split(":")[0] | |
if chosen_label != "All": | |
cond_label = list( | |
self.docs["labels"].apply( | |
lambda x: True if chosen_label in x else False | |
) | |
) | |
self.docs = self.docs[cond_label] | |
if self.docs.empty: | |
st.markdown( | |
"No document to display, please try to select a different label." | |
) | |
self.keys = [] | |
self.parameters = [] | |
else: | |
st.sidebar.subheader("Parameters of the filtering on documents") | |
self.keys, conds = set_sliders() | |
self.parameters = self.keys * 1 | |
all_conds = [ | |
subcond for cond in list(conds.values()) for subcond in cond | |
] | |
all_conds = np.all(all_conds, axis=0) | |
Visualization_for_lang.display_dataset( | |
self.docs, np.invert(all_conds), "Discarded documents", "docs" | |
) | |
# st.subheader("Display discarded documents by filter") | |
display_discarded_documents_by_filter = st.checkbox( | |
"Display discarded documents by filter" | |
) | |
if display_discarded_documents_by_filter: | |
columns = list(self.docs) | |
if "number_words" in columns: | |
cond_filter = np.invert(np.all(conds["number_words"], axis=0)) | |
Visualization_for_lang.display_dataset( | |
self.docs, | |
cond_filter, | |
"Discarded documents for the filter on the number of words", | |
"docs", | |
) | |
if "character_repetition_ratio" in columns: | |
cond_filter = np.invert( | |
np.all(conds["character_repetition_ratio"], axis=0) | |
) | |
Visualization_for_lang.display_dataset( | |
self.docs, | |
cond_filter, | |
"Discarded documents for the filter on the character repetition ratio", | |
"docs", | |
) | |
if "word_repetition_ratio" in columns: | |
cond_filter = np.invert( | |
np.all(conds["word_repetition_ratio"], axis=0) | |
) | |
Visualization_for_lang.display_dataset( | |
self.docs, | |
cond_filter, | |
"Discarded documents for the filter on the word repetition ratio", | |
"docs", | |
) | |
if "special_characters_ratio" in columns: | |
cond_filter = np.invert( | |
np.all(conds["special_characters_ratio"], axis=0) | |
) | |
Visualization_for_lang.display_dataset( | |
self.docs, | |
cond_filter, | |
"Discarded documents for the filter on the special characters ratio", | |
"docs", | |
) | |
if "stopwords_ratio" in columns: | |
cond_filter = np.invert( | |
np.all(conds["stopwords_ratio"], axis=0) | |
) | |
Visualization_for_lang.display_dataset( | |
self.docs, | |
cond_filter, | |
"Discarded documents for the filter on the stop words ratio", | |
"docs", | |
) | |
if "flagged_words_ratio" in columns: | |
cond_filter = np.invert( | |
np.all(conds["flagged_words_ratio"], axis=0) | |
) | |
Visualization_for_lang.display_dataset( | |
self.docs, | |
cond_filter, | |
"Discarded documents for the filter on the flagged words ratio", | |
"docs", | |
) | |
if "lang_id_score" in columns: | |
cond_filter = np.invert(np.all(conds["lang_id_score"], axis=0)) | |
Visualization_for_lang.display_dataset( | |
self.docs, | |
cond_filter, | |
"Discarded documents for the filter on the language identification confidence score", | |
"docs", | |
) | |
if "perplexity_score" in columns: | |
cond_filter = np.invert( | |
np.all(conds["perplexity_score"], axis=0) | |
) | |
Visualization_for_lang.display_dataset( | |
self.docs, | |
cond_filter, | |
"Discarded documents for the filter on the perplexity score", | |
"docs", | |
) | |
Visualization_for_lang.display_dataset( | |
self.docs, all_conds, "Retained documents", "docs" | |
) | |
st.header("Download data") | |
with open(self.path_data) as json_file: | |
btn = st.download_button( | |
label="Download data as json", | |
data=json_file, | |
file_name="data.json", | |
) | |
def filtering_of_words(self): | |
if not (self.words is None): | |
columns = list(self.words) | |
st.sidebar.subheader("Parameter of the filtering on words") | |
conds_words = {} | |
if "len_word" in columns: | |
with st.sidebar.expander("Length of words"): | |
cutoff_def = "If the length of a word is higher than this number, the word is removed." | |
max_len_word = min(int(np.max(self.words["len_word"])) + 1, 200) | |
cutoff_word = st.slider(cutoff_def, 0, max_len_word, max_len_word) | |
new_key = ("len_word", cutoff_word, True) | |
self.parameters.append(new_key) | |
Visualization_for_lang.plot_hist(self.words, new_key) | |
cond_len_words = self.words["len_word"] <= cutoff_word | |
Visualization_for_lang.print_discarded_by_cond(cond_len_words) | |
conds_words["len_word"] = cond_len_words | |
if "incorrect_substrings" in columns: | |
with st.sidebar.expander("Words with incorrect substrings"): | |
incorrect_substrings = st.checkbox( | |
"Remove words with incorrect substrings." | |
) | |
self.parameters.append( | |
("incorrect_substrings", incorrect_substrings) | |
) | |
checkbox = st.checkbox( | |
"Diplay distribution", | |
value=True, | |
key="display_distribution_incorrect_substrings", | |
) | |
if checkbox: | |
incor_sub = np.array(self.words["incorrect_substrings"]) * 1 | |
with_incor_sub = np.sum(incor_sub) | |
without_incor_sub = len(incor_sub) - with_incor_sub | |
st.markdown( | |
f"Number of words with incorrect substrings: {with_incor_sub}" | |
) | |
st.markdown( | |
f"Number of words without incorrect substrings: {without_incor_sub}" | |
) | |
if incorrect_substrings: | |
cond_incorrect_substrings = np.invert( | |
self.words["incorrect_substrings"] | |
) | |
else: | |
cond_incorrect_substrings = np.array( | |
[ | |
True | |
for i in range(len(self.words["incorrect_substrings"])) | |
] | |
) | |
Visualization_for_lang.print_discarded_by_cond( | |
cond_incorrect_substrings | |
) | |
conds_words["incorrect_substrings"] = cond_incorrect_substrings | |
all_conds_words = np.all(list(conds_words.values()), axis=0) | |
with st.expander( | |
f"Filtering on words, for {self.num_docs_for_words} {self.lang} documents" | |
): | |
st.header( | |
f"Filtering on words, for {self.num_docs_for_words} {self.lang} documents" | |
) | |
st.markdown( | |
f"Since the number of words is way larger than the number of documents, " | |
f"we consider in this section words for only {self.num_docs_for_words} documents." | |
) | |
Visualization_for_lang.display_dataset( | |
self.words, np.invert(all_conds_words), "Discarded words", "words" | |
) | |
# st.subheader("Display discarded words by filter") | |
display_discarded_words_by_filter = st.checkbox( | |
"Display discarded words by filter" | |
) | |
if display_discarded_words_by_filter: | |
if "len_word" in columns: | |
cond_filter = np.invert(conds_words["len_word"]) | |
Visualization_for_lang.display_dataset( | |
self.words, | |
cond_filter, | |
"Discarded words for the filter on length", | |
"words", | |
) | |
if "incorrect_substrings" in columns: | |
cond_filter = np.invert(conds_words["incorrect_substrings"]) | |
Visualization_for_lang.display_dataset( | |
self.words, | |
cond_filter, | |
"Discarded words for the filter on incorrect substrings", | |
"words", | |
) | |
Visualization_for_lang.display_dataset( | |
self.words, all_conds_words, "Retained words", "words" | |
) | |
def download_parameters(self): | |
st.sidebar.subheader("Download parameters") | |
btn = st.sidebar.download_button( | |
label="Download current parameters as json", | |
data=json.dumps(self.parameters), | |
file_name=f"parameters_{self.lang_dataset_id}.json", | |
) | |
""" | |
def plot_zipf_law(self): | |
if not (self.words is None): | |
st.header("Zipf's Law") | |
display_zipf_law = st.checkbox("Display Zipf's Law") | |
if display_zipf_law: | |
freq_words = {} | |
for _, row in self.words.iterrows(): | |
freq_words[row["word"]] = freq_words.get(row["word"], 0) + 1 | |
freq_words = np.array(list(freq_words.values())) | |
freq_words = -np.sort(-freq_words) | |
fig, ax = plt.subplots() | |
ax.loglog(freq_words) | |
ax.set_title("Zipf's Law") | |
ax.set_xlabel("$i$-th most frequent word") | |
ax.set_ylabel("frequency in the documents") | |
st.pyplot(fig) | |
""" | |
def analyse_personal_doc(self): | |
with st.expander("Analyse your own document"): | |
st.header("Analyse your own document") | |
personal_doc = st.text_area( | |
label="Paste here the document you want to analyse", | |
value="", | |
max_chars=10000, | |
) | |
is_discarded = False | |
def is_doc_discarded(key, score): | |
if key[2]: # max cutoff | |
return score > key[1] | |
else: | |
return score < key[1] | |
if personal_doc: | |
st.markdown("Statistics of the document:") | |
for key in self.keys: | |
if key[0] == "number_words": | |
words = ModifyingDocuments.get_words_from_document( | |
personal_doc, | |
self.sentencepiece_model_tok, | |
lower_case=False, | |
strip_characters=self.param["strip_characters"], | |
) | |
if key[2]: | |
st.markdown(f"Number of words: {len(words)}") | |
if is_doc_discarded(key, len(words)): | |
is_discarded = True | |
elif key[0] == "character_repetition_ratio": | |
character_repetition_ratio = ( | |
Filtering.compute_character_repetition_ratio( | |
personal_doc, int(key[3]) | |
) | |
) | |
character_repetition_ratio = round( | |
character_repetition_ratio, 3 | |
) | |
st.markdown( | |
f"Character repetition ratio: {character_repetition_ratio}" | |
) | |
if is_doc_discarded(key, character_repetition_ratio): | |
is_discarded = True | |
elif key[0] == "word_repetition_ratio": | |
word_repetition_ratio = Filtering.compute_word_repetition_ratio( | |
personal_doc, | |
self.sentencepiece_model_tok, | |
self.param["strip_characters"], | |
int(key[3]), | |
) | |
word_repetition_ratio = round(word_repetition_ratio, 3) | |
st.markdown(f"Word repetition ratio: {word_repetition_ratio}") | |
if is_doc_discarded(key, word_repetition_ratio): | |
is_discarded = True | |
elif key[0] == "special_characters_ratio": | |
special_characters_ratio = ( | |
Filtering.compute_special_characters_ratio( | |
personal_doc, self.param["special_characters"] | |
) | |
) | |
special_characters_ratio = round(special_characters_ratio, 3) | |
st.markdown( | |
f"Special characters ratio: {special_characters_ratio}" | |
) | |
if is_doc_discarded(key, special_characters_ratio): | |
is_discarded = True | |
elif key[0] == "stopwords_ratio": | |
stopwords_ratio = Filtering.compute_stopwords_ratio( | |
personal_doc, | |
self.sentencepiece_model_tok, | |
self.param["strip_characters"], | |
self.param["cond_words_augmentation"], | |
self.param["words_augmentation_group_sizes"], | |
self.param["words_augmentation_join_char"], | |
self.stopwords, | |
) | |
stopwords_ratio = round(stopwords_ratio, 3) | |
st.markdown(f"Stop words ratio: {stopwords_ratio}") | |
if is_doc_discarded(key, stopwords_ratio): | |
is_discarded = True | |
elif key[0] == "flagged_words_ratio": | |
flagged_words_ratio = Filtering.compute_flagged_words_ratio( | |
personal_doc, | |
self.sentencepiece_model_tok, | |
self.param["strip_characters"], | |
self.param["cond_words_augmentation"], | |
self.param["words_augmentation_group_sizes"], | |
self.param["words_augmentation_join_char"], | |
self.flagged_words, | |
) | |
flagged_words_ratio = round(flagged_words_ratio, 3) | |
st.markdown(f"Flagged words ratio: {flagged_words_ratio}") | |
if is_doc_discarded(key, flagged_words_ratio): | |
is_discarded = True | |
elif key[0] == "lang_id_score": | |
( | |
lang_pred_dataset_id, | |
lang_id_score, | |
) = Filtering.compute_lang_id_pred_score( | |
personal_doc, self.model_lang_id | |
) | |
lang_id_score = round(lang_id_score, 3) | |
st.markdown( | |
f"Language identification confidence score: {lang_id_score}" | |
) | |
if is_doc_discarded(key, flagged_words_ratio) or ( | |
self.lang_dataset_id != lang_pred_dataset_id | |
): | |
is_discarded = True | |
elif key[0] == "perplexity_score": | |
perplexity_score = Filtering.compute_perplexity_score( | |
personal_doc, | |
self.sentencepiece_model, | |
self.kenlm_model, | |
) | |
perplexity_score = round(perplexity_score, 3) | |
st.markdown(f"Perplexity score: {perplexity_score}") | |
if is_doc_discarded(key, perplexity_score): | |
is_discarded = True | |
is_discarded = "" if is_discarded else "not " | |
st.markdown( | |
f"With the current filtering parameters, this document **is {is_discarded}discarded**." | |
) | |
def visualization_for_lang(self): | |
self.set_title() | |
self.open_data() | |
self.filtering_of_docs() | |
self.filtering_of_words() | |
self.download_parameters() | |
self.analyse_personal_doc() | |
class Visualization: | |
def __init__(self, path_instructions, param_visu_langs): | |
self.path_instructions = path_instructions | |
self.param_visu_langs = param_visu_langs | |
def preamble(self): | |
def get_binary_file_downloader_html(bin_file, file_label="File"): | |
with open(bin_file, "rb") as f: | |
data = f.read() | |
bin_str = base64.b64encode(data).decode() | |
href = f'<a href="data:application/octet-stream;base64,{bin_str}" download="{os.path.basename(bin_file)}">{file_label}</a>' | |
return href | |
st.markdown( | |
"Before diving into this demo, you might want to take a look at how the filtering pipeline looks like in more detail in this " | |
+ get_binary_file_downloader_html( | |
self.path_instructions, | |
"pdf", | |
) | |
+ ".", | |
unsafe_allow_html=True, | |
) | |
def warning_preamble(self): | |
st.markdown( | |
"This demo can be a little slow, and only allows you to process up to 5000 documents " | |
"for a decent speed. If you want to display up to three times more documents and have " | |
"a faster visualization, we invite you to run this " | |
"[code](https://github.com/bigscience-workshop/data_tooling/tree/master/ac_dc/visualization) " | |
"on your computer." | |
) | |
def choose_lang(self): | |
options = [ | |
self.param_visu_langs[lang_dataset_id]["lang"] | |
for lang_dataset_id in self.param_visu_langs | |
] | |
index = options.index("English") if ("English" in options) else 0 | |
lang_chosen = st.selectbox( | |
label="Select the language for visualization", | |
options=options, | |
index=index, | |
) | |
if lang_chosen != "None": | |
lang_chosen_dataset_id = langs_id.loc[ | |
langs_id["lang"] == lang_chosen, "dataset_id" | |
].iloc[0] | |
visualization_for_lang = Visualization_for_lang( | |
path_data=self.param_visu_langs[lang_chosen_dataset_id]["path_data"], | |
lang=self.param_visu_langs[lang_chosen_dataset_id]["lang"], | |
num_docs=self.param_visu_langs[lang_chosen_dataset_id]["num_docs"], | |
num_docs_for_words=self.param_visu_langs[lang_chosen_dataset_id][ | |
"num_docs_for_words" | |
], | |
max_len_text_display=self.param_visu_langs[lang_chosen_dataset_id][ | |
"max_len_text_display" | |
], | |
lang_dataset_id=self.param_visu_langs[lang_chosen_dataset_id][ | |
"lang_dataset_id" | |
], | |
path_fasttext_model=self.param_visu_langs[lang_chosen_dataset_id][ | |
"path_fasttext_model" | |
], | |
path_sentencepiece_model=self.param_visu_langs[lang_chosen_dataset_id][ | |
"path_sentencepiece_model" | |
], | |
path_kenlm_model=self.param_visu_langs[lang_chosen_dataset_id][ | |
"path_kenlm_model" | |
], | |
) | |
visualization_for_lang.visualization_for_lang() | |
def visualization(self): | |
self.preamble() | |
self.warning_preamble() | |
self.choose_lang() | |
path_instructions = "./explanation_filtering_pipeline.pdf" | |
param_visu_langs = { | |
lang_dataset_id: { | |
"path_data": f"./{lang_dataset_id}_examples_with_stats.json", | |
"lang": langs_id.loc[langs_id["dataset_id"] == lang_dataset_id, "lang"].iloc[0], | |
"num_docs": 5000, | |
"num_docs_for_words": 500, | |
"max_len_text_display": 10000, | |
"lang_dataset_id": lang_dataset_id, | |
"path_fasttext_model": "./lid.176.bin", | |
"path_sentencepiece_model": f"./{lang_dataset_id}.sp.model", | |
"path_kenlm_model": f"./{lang_dataset_id}.arpa.bin", | |
} | |
for lang_dataset_id in ["eu", "ca", "zh", "en", "fr", "id", "pt", "es"] | |
} | |
visualization = Visualization(path_instructions, param_visu_langs) | |
visualization.visualization() | |