Spaces:
Runtime error
Runtime error
HugoLaurencon
commited on
merge
Browse files
app_2.py
ADDED
@@ -0,0 +1,378 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Run with: streamlit run visualization.py
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
|
5 |
+
import os
|
6 |
+
|
7 |
+
import base64
|
8 |
+
import json
|
9 |
+
import pandas as pd
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
|
13 |
+
import matplotlib.pyplot as plt
|
14 |
+
|
15 |
+
|
16 |
+
class Visualization:
|
17 |
+
def __init__(
|
18 |
+
self,
|
19 |
+
path_instructions,
|
20 |
+
path_data,
|
21 |
+
lang,
|
22 |
+
num_docs,
|
23 |
+
num_docs_for_words,
|
24 |
+
max_len_text_display,
|
25 |
+
):
|
26 |
+
self.path_instructions = path_instructions
|
27 |
+
self.path_data = path_data
|
28 |
+
self.lang = lang
|
29 |
+
self.num_docs = num_docs
|
30 |
+
self.num_docs_for_words = num_docs_for_words
|
31 |
+
self.max_len_text_display = max_len_text_display
|
32 |
+
|
33 |
+
def preamble(self):
|
34 |
+
st.markdown(
|
35 |
+
"Before diving into this demo, you might want to take a look at how the filtering pipeline of OSCAR looks like in more detail."
|
36 |
+
)
|
37 |
+
|
38 |
+
def get_binary_file_downloader_html(bin_file, file_label="File"):
|
39 |
+
with open(bin_file, "rb") as f:
|
40 |
+
data = f.read()
|
41 |
+
bin_str = base64.b64encode(data).decode()
|
42 |
+
href = f'<a href="data:application/octet-stream;base64,{bin_str}" download="{os.path.basename(bin_file)}">{file_label}</a>'
|
43 |
+
return href
|
44 |
+
|
45 |
+
st.markdown(
|
46 |
+
get_binary_file_downloader_html(
|
47 |
+
self.path_instructions,
|
48 |
+
"Download the filtering pipeline of OSCAR as pdf",
|
49 |
+
),
|
50 |
+
unsafe_allow_html=True,
|
51 |
+
)
|
52 |
+
|
53 |
+
def open_data(self):
|
54 |
+
with open(self.path_data) as json_file:
|
55 |
+
data = json.load(json_file)
|
56 |
+
|
57 |
+
self.num_docs = min(self.num_docs, len(data))
|
58 |
+
self.num_docs_for_words = min(self.num_docs_for_words, len(data))
|
59 |
+
|
60 |
+
if "words" in data[0]:
|
61 |
+
words = [doc["words"] for doc in data[: self.num_docs_for_words]]
|
62 |
+
words = [word for doc in words for word in doc]
|
63 |
+
self.words = pd.DataFrame(words)
|
64 |
+
else:
|
65 |
+
self.words = None
|
66 |
+
|
67 |
+
docs = data[: self.num_docs]
|
68 |
+
for doc in docs:
|
69 |
+
if not (self.words is None):
|
70 |
+
del doc["words"]
|
71 |
+
if len(doc["text"]) > self.max_len_text_display:
|
72 |
+
doc["text"] = (
|
73 |
+
doc["text"][: self.max_len_text_display]
|
74 |
+
+ " [...] [THIS LONG TEXT HAS BEEN TRUNCATED FOR DISPLAY REASONS]"
|
75 |
+
)
|
76 |
+
self.docs = pd.DataFrame(docs)
|
77 |
+
|
78 |
+
def set_title(self):
|
79 |
+
st.title(f"{self.num_docs} {self.lang} documents from OSCAR with their stats.")
|
80 |
+
|
81 |
+
def filtering_of_docs(self):
|
82 |
+
st.sidebar.subheader("Parameters of the filtering on documents")
|
83 |
+
|
84 |
+
def set_sliders(docs):
|
85 |
+
columns = list(docs)
|
86 |
+
keys = []
|
87 |
+
conds = {}
|
88 |
+
|
89 |
+
def get_cond(key, cutoff, max_cutoff):
|
90 |
+
if max_cutoff:
|
91 |
+
return self.docs[key] <= cutoff
|
92 |
+
return self.docs[key] >= cutoff
|
93 |
+
|
94 |
+
def print_discared_by_cond(cond):
|
95 |
+
st.sidebar.caption(
|
96 |
+
f"{(len(cond) - np.sum(1*cond)) / len(cond) * 100:.2f}% of the total is discarded with this filter."
|
97 |
+
)
|
98 |
+
st.sidebar.caption("---------")
|
99 |
+
|
100 |
+
if "number_words" in columns:
|
101 |
+
cutoff_def = "If the number of words of a document is lower than this number, the document is removed."
|
102 |
+
max_nb_words = int(np.max(docs["number_words"])) + 1
|
103 |
+
cutoff_min_number_words = st.sidebar.slider(
|
104 |
+
cutoff_def, 0, min(max_nb_words, 500), 0
|
105 |
+
)
|
106 |
+
new_key = ("number_words", cutoff_min_number_words, False)
|
107 |
+
keys.append(new_key)
|
108 |
+
cond_1 = get_cond(new_key[0], new_key[1], new_key[2])
|
109 |
+
print_discared_by_cond(cond_1)
|
110 |
+
|
111 |
+
cutoff_def = "If the number of words of a document is higher than this number, the document is removed."
|
112 |
+
cutoff_max_number_words = st.sidebar.slider(
|
113 |
+
cutoff_def, 0, max_nb_words, max_nb_words
|
114 |
+
)
|
115 |
+
new_key = ("number_words", cutoff_max_number_words, True)
|
116 |
+
keys.append(new_key)
|
117 |
+
cond_2 = get_cond(new_key[0], new_key[1], new_key[2])
|
118 |
+
print_discared_by_cond(cond_2)
|
119 |
+
|
120 |
+
conds["number_words"] = [cond_1, cond_2]
|
121 |
+
|
122 |
+
if "special_characters_ratio" in columns:
|
123 |
+
cutoff_def = "If the special characters ratio of a document is higher than this number, the document is removed."
|
124 |
+
cutoff_special_characters_ratio = st.sidebar.slider(
|
125 |
+
cutoff_def, 0.0, 1.0, 1.0, step=0.01
|
126 |
+
)
|
127 |
+
new_key = (
|
128 |
+
"special_characters_ratio",
|
129 |
+
cutoff_special_characters_ratio,
|
130 |
+
True,
|
131 |
+
)
|
132 |
+
keys.append(new_key)
|
133 |
+
cond = get_cond(new_key[0], new_key[1], new_key[2])
|
134 |
+
print_discared_by_cond(cond)
|
135 |
+
conds["special_characters_ratio"] = [cond]
|
136 |
+
|
137 |
+
if "stopwords_ratio" in columns:
|
138 |
+
cutoff_def = "If the stop words ratio of a document is lower than this number, the document is removed."
|
139 |
+
cutoff_stopwords_ratio = st.sidebar.slider(
|
140 |
+
cutoff_def, 0.0, 1.0, 0.0, step=0.01
|
141 |
+
)
|
142 |
+
new_key = ("stopwords_ratio", cutoff_stopwords_ratio, False)
|
143 |
+
keys.append(new_key)
|
144 |
+
cond = get_cond(new_key[0], new_key[1], new_key[2])
|
145 |
+
print_discared_by_cond(cond)
|
146 |
+
conds["stopwords_ratio"] = [cond]
|
147 |
+
|
148 |
+
if "badwords_ratio" in columns:
|
149 |
+
cutoff_def = "If the bad words ratio of a document is higher than this number, the document is removed."
|
150 |
+
cutoff_badwords_ratio = st.sidebar.slider(
|
151 |
+
cutoff_def, 0.0, 1.0, 1.0, step=0.01
|
152 |
+
)
|
153 |
+
new_key = ("badwords_ratio", cutoff_badwords_ratio, True)
|
154 |
+
keys.append(new_key)
|
155 |
+
cond = get_cond(new_key[0], new_key[1], new_key[2])
|
156 |
+
print_discared_by_cond(cond)
|
157 |
+
conds["badwords_ratio"] = [cond]
|
158 |
+
|
159 |
+
if "lang_id_score" in columns:
|
160 |
+
cutoff_def = "If the confidence score for the language identification prediction of a document is lower than this number, the document is removed."
|
161 |
+
cutoff_lang_id_score = st.sidebar.slider(
|
162 |
+
cutoff_def, 0.0, 1.0, 0.0, step=0.01
|
163 |
+
)
|
164 |
+
new_key = ("lang_id_score", cutoff_lang_id_score, False)
|
165 |
+
keys.append(new_key)
|
166 |
+
cond = get_cond(new_key[0], new_key[1], new_key[2])
|
167 |
+
print_discared_by_cond(cond)
|
168 |
+
conds["lang_id_score"] = [cond]
|
169 |
+
|
170 |
+
if "perplexity_score" in columns:
|
171 |
+
cutoff_def = "If the perplexity score of a document is higher than this number, the document is removed."
|
172 |
+
max_pp = int(np.max(docs["perplexity_score"])) + 1
|
173 |
+
cutoff_perplexity_score = st.sidebar.slider(
|
174 |
+
cutoff_def, 0, max_pp, max_pp
|
175 |
+
)
|
176 |
+
new_key = ("perplexity_score", cutoff_perplexity_score, True)
|
177 |
+
keys.append(new_key)
|
178 |
+
cond = get_cond(new_key[0], new_key[1], new_key[2])
|
179 |
+
print_discared_by_cond(cond)
|
180 |
+
conds["perplexity_score"] = [cond]
|
181 |
+
|
182 |
+
return keys, conds
|
183 |
+
|
184 |
+
self.keys, conds = set_sliders(self.docs)
|
185 |
+
|
186 |
+
all_conds = [subcond for cond in list(conds.values()) for subcond in cond]
|
187 |
+
all_conds = np.all(all_conds, axis=0)
|
188 |
+
|
189 |
+
st.header("Filtering on documents")
|
190 |
+
|
191 |
+
def display_dataset(cond, description):
|
192 |
+
displayed_docs = self.docs.loc[cond]
|
193 |
+
st.subheader(
|
194 |
+
f"{description}: {len(displayed_docs)} docs ({len(displayed_docs) / self.num_docs * 100:.2f}%)"
|
195 |
+
)
|
196 |
+
st.markdown(
|
197 |
+
"Click on a column to sort by it, place the cursor on the text to display it."
|
198 |
+
)
|
199 |
+
st.dataframe(displayed_docs)
|
200 |
+
|
201 |
+
display_dataset(np.invert(all_conds), "Discarded documents")
|
202 |
+
|
203 |
+
# st.subheader("Display discarded documents by filter")
|
204 |
+
display_discarded_documents_by_filter = st.checkbox(
|
205 |
+
"Display discarded documents by filter"
|
206 |
+
)
|
207 |
+
|
208 |
+
if display_discarded_documents_by_filter:
|
209 |
+
columns = list(self.docs)
|
210 |
+
|
211 |
+
if "number_words" in columns:
|
212 |
+
cond_filter = np.invert(np.all(conds["number_words"], axis=0))
|
213 |
+
display_dataset(
|
214 |
+
cond_filter,
|
215 |
+
"Discarded documents for the filter on the number of words",
|
216 |
+
)
|
217 |
+
|
218 |
+
if "special_characters_ratio" in columns:
|
219 |
+
cond_filter = np.invert(
|
220 |
+
np.all(conds["special_characters_ratio"], axis=0)
|
221 |
+
)
|
222 |
+
display_dataset(
|
223 |
+
cond_filter,
|
224 |
+
"Discarded documents for the filter on the special characters ratio",
|
225 |
+
)
|
226 |
+
|
227 |
+
if "stopwords_ratio" in columns:
|
228 |
+
cond_filter = np.invert(np.all(conds["stopwords_ratio"], axis=0))
|
229 |
+
display_dataset(
|
230 |
+
cond_filter,
|
231 |
+
"Discarded documents for the filter on the stop words ratio",
|
232 |
+
)
|
233 |
+
|
234 |
+
if "badwords_ratio" in columns:
|
235 |
+
cond_filter = np.invert(np.all(conds["badwords_ratio"], axis=0))
|
236 |
+
display_dataset(
|
237 |
+
cond_filter,
|
238 |
+
"Discarded documents for the filter on the bad words ratio",
|
239 |
+
)
|
240 |
+
|
241 |
+
if "lang_id_score" in columns:
|
242 |
+
cond_filter = np.invert(np.all(conds["lang_id_score"], axis=0))
|
243 |
+
display_dataset(
|
244 |
+
cond_filter,
|
245 |
+
"Discarded documents for the filter on the language identification confidence score",
|
246 |
+
)
|
247 |
+
|
248 |
+
if "perplexity_score" in columns:
|
249 |
+
cond_filter = np.invert(np.all(conds["perplexity_score"], axis=0))
|
250 |
+
display_dataset(
|
251 |
+
cond_filter,
|
252 |
+
"Discarded documents for the filter on the perplexity score",
|
253 |
+
)
|
254 |
+
|
255 |
+
display_dataset(all_conds, "Retained documents")
|
256 |
+
|
257 |
+
def filtering_of_words(self):
|
258 |
+
if not (self.words is None):
|
259 |
+
st.sidebar.subheader("Parameter of the filtering on words")
|
260 |
+
|
261 |
+
cutoff_def = "If the length of a word is higher than this number, the word is removed."
|
262 |
+
max_len_word = min(int(np.max(self.words["len_word"])) + 1, 200)
|
263 |
+
cutoff_word = st.sidebar.slider(cutoff_def, 0, max_len_word, max_len_word)
|
264 |
+
|
265 |
+
incorrect_substrings = st.sidebar.checkbox(
|
266 |
+
"Remove words with incorrect substrings."
|
267 |
+
)
|
268 |
+
|
269 |
+
cond_words = self.words["len_word"] <= cutoff_word
|
270 |
+
if incorrect_substrings:
|
271 |
+
cond_words = cond_words & np.invert(self.words["incorrect_substring"])
|
272 |
+
|
273 |
+
st.header("Filtering on words")
|
274 |
+
|
275 |
+
st.markdown(
|
276 |
+
f"Since the number of words is way larger than the number of documents, "
|
277 |
+
f"we consider in this section words for the first {self.num_docs_for_words} documents only."
|
278 |
+
)
|
279 |
+
|
280 |
+
discarded_words = self.words.loc[np.invert(cond_words)]
|
281 |
+
st.subheader(
|
282 |
+
f"Discarded words: {len(discarded_words)} words ({len(discarded_words) / len(self.words) * 100:.2f}%)"
|
283 |
+
)
|
284 |
+
st.markdown(
|
285 |
+
"Click on a column to sort by it, place the cursor on the text to display it."
|
286 |
+
)
|
287 |
+
st.dataframe(discarded_words)
|
288 |
+
|
289 |
+
retained_words = self.words.loc[cond_words]
|
290 |
+
st.subheader(
|
291 |
+
f"Retained words: {len(retained_words)} words ({len(retained_words) / len(self.words) * 100:.2f}%)"
|
292 |
+
)
|
293 |
+
st.markdown(
|
294 |
+
"Click on a column to sort by it, place the cursor on the text to display it."
|
295 |
+
)
|
296 |
+
st.dataframe(retained_words)
|
297 |
+
|
298 |
+
def plot_distributions_filtering_parameters(self):
|
299 |
+
st.header("Distributions of the filtering parameters")
|
300 |
+
|
301 |
+
display_distributions = st.checkbox("Display distributions")
|
302 |
+
|
303 |
+
if display_distributions:
|
304 |
+
|
305 |
+
def plot_hist(dataframe, key, num_bins=50):
|
306 |
+
st.subheader(" ".join(key.split("_")))
|
307 |
+
hist_values = dataframe[key].values
|
308 |
+
max_range = np.max(hist_values)
|
309 |
+
hist_values = np.histogram(
|
310 |
+
hist_values, bins=num_bins, range=(0, max_range)
|
311 |
+
)[0]
|
312 |
+
st.bar_chart(hist_values)
|
313 |
+
st.markdown(f"Each bin is of size: {max_range/num_bins}.")
|
314 |
+
|
315 |
+
for key in list({el[0]: None for el in self.keys}):
|
316 |
+
plot_hist(self.docs, key)
|
317 |
+
|
318 |
+
if not (self.words is None):
|
319 |
+
plot_hist(self.words, "len_word")
|
320 |
+
|
321 |
+
def plot_zipf_law(self):
|
322 |
+
if not (self.words is None):
|
323 |
+
st.header("Zipf's Law")
|
324 |
+
|
325 |
+
display_zipf_law = st.checkbox("Display Zipf's Law")
|
326 |
+
|
327 |
+
if display_zipf_law:
|
328 |
+
|
329 |
+
freq_words = {}
|
330 |
+
for _, row in self.words.iterrows():
|
331 |
+
freq_words[row["word"]] = freq_words.get(row["word"], 0) + 1
|
332 |
+
freq_words = np.array(list(freq_words.values()))
|
333 |
+
freq_words = -np.sort(-freq_words)
|
334 |
+
|
335 |
+
fig, ax = plt.subplots()
|
336 |
+
ax.loglog(freq_words)
|
337 |
+
ax.set_title("Zipf's Law")
|
338 |
+
ax.set_xlabel("$i$-th most frequent word")
|
339 |
+
ax.set_ylabel("frequency in the documents")
|
340 |
+
st.pyplot(fig)
|
341 |
+
|
342 |
+
def download_data(self):
|
343 |
+
st.header("Download data")
|
344 |
+
|
345 |
+
with open(self.path_data) as json_file:
|
346 |
+
btn = st.download_button(
|
347 |
+
label="Download data as json",
|
348 |
+
data=json_file,
|
349 |
+
file_name="data.json",
|
350 |
+
)
|
351 |
+
|
352 |
+
def visualization(self):
|
353 |
+
self.preamble()
|
354 |
+
self.open_data()
|
355 |
+
self.set_title()
|
356 |
+
self.filtering_of_docs()
|
357 |
+
self.filtering_of_words()
|
358 |
+
self.plot_distributions_filtering_parameters()
|
359 |
+
#self.plot_zipf_law()
|
360 |
+
self.download_data()
|
361 |
+
|
362 |
+
|
363 |
+
path_instructions = "./filtering_pipeline_oscar.pdf"
|
364 |
+
path_data = "./zh_examples_with_stats.json"
|
365 |
+
lang = "Chinese"
|
366 |
+
num_docs = 5000
|
367 |
+
num_docs_for_words = 500
|
368 |
+
max_len_text_display = 10000
|
369 |
+
|
370 |
+
visualization = Visualization(
|
371 |
+
path_instructions,
|
372 |
+
path_data,
|
373 |
+
lang,
|
374 |
+
num_docs,
|
375 |
+
num_docs_for_words,
|
376 |
+
max_len_text_display,
|
377 |
+
)
|
378 |
+
visualization.visualization()
|