Spaces:
Runtime error
Runtime error
HugoLaurencon
commited on
Commit
·
da13b29
1
Parent(s):
5d56c36
distributions for the filters on words and discarded words by filter
Browse files- app.py +139 -66
- en_examples_with_stats.json +2 -2
app.py
CHANGED
@@ -112,6 +112,12 @@ class Visualization:
|
|
112 |
def set_title(self):
|
113 |
st.title(f"Filtering visualization")
|
114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
@staticmethod
|
116 |
def plot_hist(dataframe, key, num_bins=50):
|
117 |
checkbox = st.checkbox(
|
@@ -130,6 +136,17 @@ class Visualization:
|
|
130 |
ax.axvline(x=key[1], color="r", linestyle="dashed")
|
131 |
st.pyplot(fig)
|
132 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
def filtering_of_docs(self):
|
134 |
st.sidebar.subheader("Parameters of the filtering on documents")
|
135 |
|
@@ -143,11 +160,6 @@ class Visualization:
|
|
143 |
return self.docs[key] <= cutoff
|
144 |
return self.docs[key] >= cutoff
|
145 |
|
146 |
-
def print_discared_by_cond(cond):
|
147 |
-
st.caption(
|
148 |
-
f"{(len(cond) - np.sum(1*cond)) / len(cond) * 100:.2f}% of the total is discarded with this filter."
|
149 |
-
)
|
150 |
-
|
151 |
if "number_words" in columns:
|
152 |
with st.sidebar.expander("Number of words"):
|
153 |
cutoff_def = "If the number of words of a document is lower than this number, the document is removed."
|
@@ -159,7 +171,7 @@ class Visualization:
|
|
159 |
keys.append(new_key)
|
160 |
Visualization.plot_hist(self.docs, new_key)
|
161 |
cond_1 = get_cond(new_key[0], new_key[1], new_key[2])
|
162 |
-
|
163 |
|
164 |
cutoff_def = "If the number of words of a document is higher than this number, the document is removed."
|
165 |
cutoff_max_number_words = st.slider(
|
@@ -168,7 +180,7 @@ class Visualization:
|
|
168 |
new_key = ("number_words", cutoff_max_number_words, True)
|
169 |
keys.append(new_key)
|
170 |
cond_2 = get_cond(new_key[0], new_key[1], new_key[2])
|
171 |
-
|
172 |
|
173 |
conds["number_words"] = [cond_1, cond_2]
|
174 |
|
@@ -216,7 +228,7 @@ class Visualization:
|
|
216 |
keys.append(new_key)
|
217 |
Visualization.plot_hist(self.docs, new_key)
|
218 |
cond = get_cond(new_key[0], new_key[1], new_key[2])
|
219 |
-
|
220 |
conds["repetitions_ratio"] = [cond]
|
221 |
|
222 |
if "special_characters_ratio" in columns:
|
@@ -233,7 +245,7 @@ class Visualization:
|
|
233 |
keys.append(new_key)
|
234 |
Visualization.plot_hist(self.docs, new_key)
|
235 |
cond = get_cond(new_key[0], new_key[1], new_key[2])
|
236 |
-
|
237 |
conds["special_characters_ratio"] = [cond]
|
238 |
|
239 |
if "stopwords_ratio" in columns:
|
@@ -269,7 +281,7 @@ class Visualization:
|
|
269 |
keys.append(new_key)
|
270 |
Visualization.plot_hist(self.docs, new_key)
|
271 |
cond = get_cond(new_key[0], new_key[1], new_key[2])
|
272 |
-
|
273 |
conds["stopwords_ratio"] = [cond]
|
274 |
|
275 |
if "flagged_words_ratio" in columns:
|
@@ -298,14 +310,15 @@ class Visualization:
|
|
298 |
new_flagged_words,
|
299 |
)
|
300 |
cutoff_def = "If the flagged words ratio of a document is higher than this number, the document is removed."
|
|
|
301 |
cutoff_flagged_words_ratio = st.slider(
|
302 |
-
cutoff_def, 0.0,
|
303 |
)
|
304 |
new_key = ("flagged_words_ratio", cutoff_flagged_words_ratio, True)
|
305 |
keys.append(new_key)
|
306 |
Visualization.plot_hist(self.docs, new_key)
|
307 |
cond = get_cond(new_key[0], new_key[1], new_key[2])
|
308 |
-
|
309 |
conds["flagged_words_ratio"] = [cond]
|
310 |
|
311 |
if "lang_id_score" in columns:
|
@@ -318,7 +331,7 @@ class Visualization:
|
|
318 |
keys.append(new_key)
|
319 |
Visualization.plot_hist(self.docs, new_key)
|
320 |
cond = get_cond(new_key[0], new_key[1], new_key[2])
|
321 |
-
|
322 |
conds["lang_id_score"] = [cond]
|
323 |
|
324 |
if "perplexity_score" in columns:
|
@@ -330,7 +343,7 @@ class Visualization:
|
|
330 |
keys.append(new_key)
|
331 |
Visualization.plot_hist(self.docs, new_key)
|
332 |
cond = get_cond(new_key[0], new_key[1], new_key[2])
|
333 |
-
|
334 |
conds["perplexity_score"] = [cond]
|
335 |
|
336 |
return keys, conds
|
@@ -348,17 +361,9 @@ class Visualization:
|
|
348 |
f"Filtering on documents, for {self.num_docs} {self.lang} documents"
|
349 |
)
|
350 |
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
f"{description}: {len(displayed_docs)} docs ({len(displayed_docs) / self.num_docs * 100:.2f}%)"
|
355 |
-
)
|
356 |
-
st.markdown(
|
357 |
-
"Click on a column to sort by it, place the cursor on the text to display it."
|
358 |
-
)
|
359 |
-
st.dataframe(displayed_docs)
|
360 |
-
|
361 |
-
display_dataset(np.invert(all_conds), "Discarded documents")
|
362 |
|
363 |
# st.subheader("Display discarded documents by filter")
|
364 |
display_discarded_documents_by_filter = st.checkbox(
|
@@ -370,58 +375,74 @@ class Visualization:
|
|
370 |
|
371 |
if "number_words" in columns:
|
372 |
cond_filter = np.invert(np.all(conds["number_words"], axis=0))
|
373 |
-
display_dataset(
|
|
|
374 |
cond_filter,
|
375 |
"Discarded documents for the filter on the number of words",
|
|
|
376 |
)
|
377 |
|
378 |
if "repetitions_ratio" in columns:
|
379 |
cond_filter = np.invert(np.all(conds["repetitions_ratio"], axis=0))
|
380 |
-
display_dataset(
|
|
|
381 |
cond_filter,
|
382 |
"Discarded documents for the filter on the repetitions ratio",
|
|
|
383 |
)
|
384 |
|
385 |
if "special_characters_ratio" in columns:
|
386 |
cond_filter = np.invert(
|
387 |
np.all(conds["special_characters_ratio"], axis=0)
|
388 |
)
|
389 |
-
display_dataset(
|
|
|
390 |
cond_filter,
|
391 |
"Discarded documents for the filter on the special characters ratio",
|
|
|
392 |
)
|
393 |
|
394 |
if "stopwords_ratio" in columns:
|
395 |
cond_filter = np.invert(np.all(conds["stopwords_ratio"], axis=0))
|
396 |
-
display_dataset(
|
|
|
397 |
cond_filter,
|
398 |
"Discarded documents for the filter on the stop words ratio",
|
|
|
399 |
)
|
400 |
|
401 |
if "flagged_words_ratio" in columns:
|
402 |
cond_filter = np.invert(
|
403 |
np.all(conds["flagged_words_ratio"], axis=0)
|
404 |
)
|
405 |
-
display_dataset(
|
|
|
406 |
cond_filter,
|
407 |
"Discarded documents for the filter on the flagged words ratio",
|
|
|
408 |
)
|
409 |
|
410 |
if "lang_id_score" in columns:
|
411 |
cond_filter = np.invert(np.all(conds["lang_id_score"], axis=0))
|
412 |
-
display_dataset(
|
|
|
413 |
cond_filter,
|
414 |
"Discarded documents for the filter on the language identification confidence score",
|
|
|
415 |
)
|
416 |
|
417 |
if "perplexity_score" in columns:
|
418 |
cond_filter = np.invert(np.all(conds["perplexity_score"], axis=0))
|
419 |
-
display_dataset(
|
|
|
420 |
cond_filter,
|
421 |
"Discarded documents for the filter on the perplexity score",
|
|
|
422 |
)
|
423 |
|
424 |
-
display_dataset(
|
|
|
|
|
425 |
|
426 |
st.header("Download data")
|
427 |
|
@@ -434,57 +455,109 @@ class Visualization:
|
|
434 |
|
435 |
def filtering_of_words(self):
|
436 |
if not (self.words is None):
|
|
|
|
|
437 |
st.sidebar.subheader("Parameter of the filtering on words")
|
438 |
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
452 |
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
458 |
|
459 |
with st.expander(
|
460 |
-
f"Filtering on words, for {self.
|
461 |
):
|
462 |
st.header(
|
463 |
-
f"Filtering on words, for {self.
|
464 |
)
|
465 |
|
466 |
st.markdown(
|
467 |
f"Since the number of words is way larger than the number of documents, "
|
468 |
-
f"we consider in this section words for
|
469 |
)
|
470 |
|
471 |
-
|
472 |
-
|
473 |
-
f"Discarded words: {len(discarded_words)} words ({len(discarded_words) / len(self.words) * 100:.2f}%)"
|
474 |
)
|
475 |
-
st.markdown(
|
476 |
-
"Click on a column to sort by it, place the cursor on the text to display it."
|
477 |
-
)
|
478 |
-
st.dataframe(discarded_words)
|
479 |
|
480 |
-
|
481 |
-
st.
|
482 |
-
|
483 |
)
|
484 |
-
|
485 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
486 |
)
|
487 |
-
st.dataframe(retained_words)
|
488 |
|
489 |
def download_parameters(self):
|
490 |
st.sidebar.subheader("Download parameters")
|
|
|
112 |
def set_title(self):
|
113 |
st.title(f"Filtering visualization")
|
114 |
|
115 |
+
@staticmethod
|
116 |
+
def print_discarded_by_cond(cond):
|
117 |
+
st.caption(
|
118 |
+
f"{(len(cond) - np.sum(1*cond)) / len(cond) * 100:.2f}% of the total is discarded with this filter."
|
119 |
+
)
|
120 |
+
|
121 |
@staticmethod
|
122 |
def plot_hist(dataframe, key, num_bins=50):
|
123 |
checkbox = st.checkbox(
|
|
|
136 |
ax.axvline(x=key[1], color="r", linestyle="dashed")
|
137 |
st.pyplot(fig)
|
138 |
|
139 |
+
@staticmethod
|
140 |
+
def display_dataset(dataframe, cond, description, type_of_examples):
|
141 |
+
displayed_examples = dataframe.loc[cond]
|
142 |
+
st.subheader(
|
143 |
+
f"{description}: {len(displayed_examples)} {type_of_examples} ({len(displayed_examples) / len(dataframe.index) * 100:.2f}%)"
|
144 |
+
)
|
145 |
+
st.markdown(
|
146 |
+
"Click on a column to sort by it, place the cursor on the text to display it."
|
147 |
+
)
|
148 |
+
st.dataframe(displayed_examples)
|
149 |
+
|
150 |
def filtering_of_docs(self):
|
151 |
st.sidebar.subheader("Parameters of the filtering on documents")
|
152 |
|
|
|
160 |
return self.docs[key] <= cutoff
|
161 |
return self.docs[key] >= cutoff
|
162 |
|
|
|
|
|
|
|
|
|
|
|
163 |
if "number_words" in columns:
|
164 |
with st.sidebar.expander("Number of words"):
|
165 |
cutoff_def = "If the number of words of a document is lower than this number, the document is removed."
|
|
|
171 |
keys.append(new_key)
|
172 |
Visualization.plot_hist(self.docs, new_key)
|
173 |
cond_1 = get_cond(new_key[0], new_key[1], new_key[2])
|
174 |
+
Visualization.print_discarded_by_cond(cond_1)
|
175 |
|
176 |
cutoff_def = "If the number of words of a document is higher than this number, the document is removed."
|
177 |
cutoff_max_number_words = st.slider(
|
|
|
180 |
new_key = ("number_words", cutoff_max_number_words, True)
|
181 |
keys.append(new_key)
|
182 |
cond_2 = get_cond(new_key[0], new_key[1], new_key[2])
|
183 |
+
Visualization.print_discarded_by_cond(cond_2)
|
184 |
|
185 |
conds["number_words"] = [cond_1, cond_2]
|
186 |
|
|
|
228 |
keys.append(new_key)
|
229 |
Visualization.plot_hist(self.docs, new_key)
|
230 |
cond = get_cond(new_key[0], new_key[1], new_key[2])
|
231 |
+
Visualization.print_discarded_by_cond(cond)
|
232 |
conds["repetitions_ratio"] = [cond]
|
233 |
|
234 |
if "special_characters_ratio" in columns:
|
|
|
245 |
keys.append(new_key)
|
246 |
Visualization.plot_hist(self.docs, new_key)
|
247 |
cond = get_cond(new_key[0], new_key[1], new_key[2])
|
248 |
+
Visualization.print_discarded_by_cond(cond)
|
249 |
conds["special_characters_ratio"] = [cond]
|
250 |
|
251 |
if "stopwords_ratio" in columns:
|
|
|
281 |
keys.append(new_key)
|
282 |
Visualization.plot_hist(self.docs, new_key)
|
283 |
cond = get_cond(new_key[0], new_key[1], new_key[2])
|
284 |
+
Visualization.print_discarded_by_cond(cond)
|
285 |
conds["stopwords_ratio"] = [cond]
|
286 |
|
287 |
if "flagged_words_ratio" in columns:
|
|
|
310 |
new_flagged_words,
|
311 |
)
|
312 |
cutoff_def = "If the flagged words ratio of a document is higher than this number, the document is removed."
|
313 |
+
max_fwr = np.max(self.docs["flagged_words_ratio"])
|
314 |
cutoff_flagged_words_ratio = st.slider(
|
315 |
+
cutoff_def, 0.0, max_fwr, max_fwr, step=0.001
|
316 |
)
|
317 |
new_key = ("flagged_words_ratio", cutoff_flagged_words_ratio, True)
|
318 |
keys.append(new_key)
|
319 |
Visualization.plot_hist(self.docs, new_key)
|
320 |
cond = get_cond(new_key[0], new_key[1], new_key[2])
|
321 |
+
Visualization.print_discarded_by_cond(cond)
|
322 |
conds["flagged_words_ratio"] = [cond]
|
323 |
|
324 |
if "lang_id_score" in columns:
|
|
|
331 |
keys.append(new_key)
|
332 |
Visualization.plot_hist(self.docs, new_key)
|
333 |
cond = get_cond(new_key[0], new_key[1], new_key[2])
|
334 |
+
Visualization.print_discarded_by_cond(cond)
|
335 |
conds["lang_id_score"] = [cond]
|
336 |
|
337 |
if "perplexity_score" in columns:
|
|
|
343 |
keys.append(new_key)
|
344 |
Visualization.plot_hist(self.docs, new_key)
|
345 |
cond = get_cond(new_key[0], new_key[1], new_key[2])
|
346 |
+
Visualization.print_discarded_by_cond(cond)
|
347 |
conds["perplexity_score"] = [cond]
|
348 |
|
349 |
return keys, conds
|
|
|
361 |
f"Filtering on documents, for {self.num_docs} {self.lang} documents"
|
362 |
)
|
363 |
|
364 |
+
Visualization.display_dataset(
|
365 |
+
self.docs, np.invert(all_conds), "Discarded documents", "docs"
|
366 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
367 |
|
368 |
# st.subheader("Display discarded documents by filter")
|
369 |
display_discarded_documents_by_filter = st.checkbox(
|
|
|
375 |
|
376 |
if "number_words" in columns:
|
377 |
cond_filter = np.invert(np.all(conds["number_words"], axis=0))
|
378 |
+
Visualization.display_dataset(
|
379 |
+
self.docs,
|
380 |
cond_filter,
|
381 |
"Discarded documents for the filter on the number of words",
|
382 |
+
"docs",
|
383 |
)
|
384 |
|
385 |
if "repetitions_ratio" in columns:
|
386 |
cond_filter = np.invert(np.all(conds["repetitions_ratio"], axis=0))
|
387 |
+
Visualization.display_dataset(
|
388 |
+
self.docs,
|
389 |
cond_filter,
|
390 |
"Discarded documents for the filter on the repetitions ratio",
|
391 |
+
"docs",
|
392 |
)
|
393 |
|
394 |
if "special_characters_ratio" in columns:
|
395 |
cond_filter = np.invert(
|
396 |
np.all(conds["special_characters_ratio"], axis=0)
|
397 |
)
|
398 |
+
Visualization.display_dataset(
|
399 |
+
self.docs,
|
400 |
cond_filter,
|
401 |
"Discarded documents for the filter on the special characters ratio",
|
402 |
+
"docs",
|
403 |
)
|
404 |
|
405 |
if "stopwords_ratio" in columns:
|
406 |
cond_filter = np.invert(np.all(conds["stopwords_ratio"], axis=0))
|
407 |
+
Visualization.display_dataset(
|
408 |
+
self.docs,
|
409 |
cond_filter,
|
410 |
"Discarded documents for the filter on the stop words ratio",
|
411 |
+
"docs",
|
412 |
)
|
413 |
|
414 |
if "flagged_words_ratio" in columns:
|
415 |
cond_filter = np.invert(
|
416 |
np.all(conds["flagged_words_ratio"], axis=0)
|
417 |
)
|
418 |
+
Visualization.display_dataset(
|
419 |
+
self.docs,
|
420 |
cond_filter,
|
421 |
"Discarded documents for the filter on the flagged words ratio",
|
422 |
+
"docs",
|
423 |
)
|
424 |
|
425 |
if "lang_id_score" in columns:
|
426 |
cond_filter = np.invert(np.all(conds["lang_id_score"], axis=0))
|
427 |
+
Visualization.display_dataset(
|
428 |
+
self.docs,
|
429 |
cond_filter,
|
430 |
"Discarded documents for the filter on the language identification confidence score",
|
431 |
+
"docs",
|
432 |
)
|
433 |
|
434 |
if "perplexity_score" in columns:
|
435 |
cond_filter = np.invert(np.all(conds["perplexity_score"], axis=0))
|
436 |
+
Visualization.display_dataset(
|
437 |
+
self.docs,
|
438 |
cond_filter,
|
439 |
"Discarded documents for the filter on the perplexity score",
|
440 |
+
"docs",
|
441 |
)
|
442 |
|
443 |
+
Visualization.display_dataset(
|
444 |
+
self.docs, all_conds, "Retained documents", "docs"
|
445 |
+
)
|
446 |
|
447 |
st.header("Download data")
|
448 |
|
|
|
455 |
|
456 |
def filtering_of_words(self):
|
457 |
if not (self.words is None):
|
458 |
+
columns = list(self.words)
|
459 |
+
|
460 |
st.sidebar.subheader("Parameter of the filtering on words")
|
461 |
|
462 |
+
conds_words = {}
|
463 |
+
|
464 |
+
if "len_word" in columns:
|
465 |
+
with st.sidebar.expander("Length of words"):
|
466 |
+
cutoff_def = "If the length of a word is higher than this number, the word is removed."
|
467 |
+
max_len_word = min(int(np.max(self.words["len_word"])) + 1, 200)
|
468 |
+
cutoff_word = st.slider(cutoff_def, 0, max_len_word, max_len_word)
|
469 |
+
new_key = ("len_word", cutoff_word, True)
|
470 |
+
self.parameters.append(new_key)
|
471 |
+
Visualization.plot_hist(self.words, new_key)
|
472 |
+
cond_len_words = self.words["len_word"] <= cutoff_word
|
473 |
+
Visualization.print_discarded_by_cond(cond_len_words)
|
474 |
+
conds_words["len_word"] = cond_len_words
|
475 |
+
|
476 |
+
if "incorrect_substrings" in columns:
|
477 |
+
with st.sidebar.expander("Words with incorrect substrings"):
|
478 |
+
incorrect_substrings = st.checkbox(
|
479 |
+
"Remove words with incorrect substrings."
|
480 |
+
)
|
481 |
+
self.parameters.append(
|
482 |
+
("incorrect_substrings", incorrect_substrings)
|
483 |
+
)
|
484 |
|
485 |
+
checkbox = st.checkbox(
|
486 |
+
"Diplay distribution",
|
487 |
+
value=True,
|
488 |
+
key="display_distribution_incorrect_substrings",
|
489 |
)
|
490 |
+
if checkbox:
|
491 |
+
incor_sub = np.array(self.words["incorrect_substrings"]) * 1
|
492 |
+
with_incor_sub = np.sum(incor_sub)
|
493 |
+
without_incor_sub = len(incor_sub) - with_incor_sub
|
494 |
+
st.markdown(
|
495 |
+
f"Number of words with incorrect substrings: {with_incor_sub}"
|
496 |
+
)
|
497 |
+
st.markdown(
|
498 |
+
f"Number of words without incorrect substrings: {without_incor_sub}"
|
499 |
+
)
|
500 |
+
|
501 |
+
if incorrect_substrings:
|
502 |
+
cond_incorrect_substrings = np.invert(
|
503 |
+
self.words["incorrect_substrings"]
|
504 |
+
)
|
505 |
+
else:
|
506 |
+
cond_incorrect_substrings = np.array(
|
507 |
+
[
|
508 |
+
True
|
509 |
+
for i in range(len(self.words["incorrect_substrings"]))
|
510 |
+
]
|
511 |
+
)
|
512 |
+
Visualization.print_discarded_by_cond(cond_incorrect_substrings)
|
513 |
+
conds_words["incorrect_substrings"] = cond_incorrect_substrings
|
514 |
+
|
515 |
+
all_conds_words = np.all(list(conds_words.values()), axis=0)
|
516 |
|
517 |
with st.expander(
|
518 |
+
f"Filtering on words, for {self.num_docs_for_words} {self.lang} documents"
|
519 |
):
|
520 |
st.header(
|
521 |
+
f"Filtering on words, for {self.num_docs_for_words} {self.lang} documents"
|
522 |
)
|
523 |
|
524 |
st.markdown(
|
525 |
f"Since the number of words is way larger than the number of documents, "
|
526 |
+
f"we consider in this section words for only {self.num_docs_for_words} documents."
|
527 |
)
|
528 |
|
529 |
+
Visualization.display_dataset(
|
530 |
+
self.words, np.invert(all_conds_words), "Discarded words", "words"
|
|
|
531 |
)
|
|
|
|
|
|
|
|
|
532 |
|
533 |
+
# st.subheader("Display discarded words by filter")
|
534 |
+
display_discarded_words_by_filter = st.checkbox(
|
535 |
+
"Display discarded words by filter"
|
536 |
)
|
537 |
+
|
538 |
+
if display_discarded_words_by_filter:
|
539 |
+
|
540 |
+
if "len_word" in columns:
|
541 |
+
cond_filter = np.invert(conds_words["len_word"])
|
542 |
+
Visualization.display_dataset(
|
543 |
+
self.words,
|
544 |
+
cond_filter,
|
545 |
+
"Discarded words for the filter on length",
|
546 |
+
"words",
|
547 |
+
)
|
548 |
+
|
549 |
+
if "incorrect_substrings" in columns:
|
550 |
+
cond_filter = np.invert(conds_words["incorrect_substrings"])
|
551 |
+
Visualization.display_dataset(
|
552 |
+
self.words,
|
553 |
+
cond_filter,
|
554 |
+
"Discarded words for the filter on incorrect substrings",
|
555 |
+
"words",
|
556 |
+
)
|
557 |
+
|
558 |
+
Visualization.display_dataset(
|
559 |
+
self.words, all_conds_words, "Retained words", "words"
|
560 |
)
|
|
|
561 |
|
562 |
def download_parameters(self):
|
563 |
st.sidebar.subheader("Download parameters")
|
en_examples_with_stats.json
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:29417f05cc029ab24ba89cfc4358dac755411b01f1925c735c2205b68f975fcc
|
3 |
+
size 240781004
|