# Run with: streamlit run visualization.py import streamlit as st import os import base64 import json import pandas as pd pd.options.mode.chained_assignment = None import numpy as np import matplotlib.pyplot as plt class Visualization: def __init__( self, path_instructions, path_data, lang, num_docs, num_docs_for_words, max_len_text_display, ): self.path_instructions = path_instructions self.path_data = path_data self.lang = lang self.num_docs = num_docs self.num_docs_for_words = num_docs_for_words self.max_len_text_display = max_len_text_display def preamble(self): st.markdown( "Before diving into this demo, you might want to take a look at how the filtering pipeline looks like in more detail." ) def get_binary_file_downloader_html(bin_file, file_label="File"): with open(bin_file, "rb") as f: data = f.read() bin_str = base64.b64encode(data).decode() href = f'{file_label}' return href st.markdown( get_binary_file_downloader_html( self.path_instructions, "Download the explanation of the filtering pipeline as pdf", ), unsafe_allow_html=True, ) def open_data(self): with open(self.path_data) as json_file: data = json.load(json_file) self.num_docs = min(self.num_docs, len(data)) self.num_docs_for_words = min(self.num_docs_for_words, len(data)) if "words" in data[0]: words = [doc["words"] for doc in data[: self.num_docs_for_words]] words = [word for doc in words for word in doc] self.words = pd.DataFrame(words) else: self.words = None docs = data[: self.num_docs] for doc in docs: if not (self.words is None): del doc["words"] if len(doc["text"]) > self.max_len_text_display: doc["text"] = ( doc["text"][: self.max_len_text_display] + " [...] [THIS LONG TEXT HAS BEEN TRUNCATED FOR DISPLAY REASONS]" ) self.docs_checkpoint = pd.DataFrame(docs) self.docs = self.docs_checkpoint def set_title(self): st.title(f"{self.num_docs} {self.lang} documents with their stats.") def filtering_of_docs(self): st.sidebar.subheader("Parameters of the filtering on documents") def set_sliders(): columns = list(self.docs) keys = [] conds = {} def get_cond(key, cutoff, max_cutoff): if max_cutoff: return self.docs[key] <= cutoff return self.docs[key] >= cutoff def print_discared_by_cond(cond): st.sidebar.caption( f"{(len(cond) - np.sum(1*cond)) / len(cond) * 100:.2f}% of the total is discarded with this filter." ) st.sidebar.caption("---------") if "number_words" in columns: cutoff_def = "If the number of words of a document is lower than this number, the document is removed." max_nb_words = int(np.max(self.docs["number_words"])) + 1 cutoff_min_number_words = st.sidebar.slider( cutoff_def, 0, min(max_nb_words, 500), 0 ) new_key = ("number_words", cutoff_min_number_words, False) keys.append(new_key) cond_1 = get_cond(new_key[0], new_key[1], new_key[2]) print_discared_by_cond(cond_1) cutoff_def = "If the number of words of a document is higher than this number, the document is removed." cutoff_max_number_words = st.sidebar.slider( cutoff_def, 0, max_nb_words, max_nb_words ) new_key = ("number_words", cutoff_max_number_words, True) keys.append(new_key) cond_2 = get_cond(new_key[0], new_key[1], new_key[2]) print_discared_by_cond(cond_2) conds["number_words"] = [cond_1, cond_2] if "repetitions_ratio" in columns: val_repetitions_lengths = list( self.docs["repetitions_ratio"].iloc[0].keys() ) default_index = ( val_repetitions_lengths.index("10") if "10" in val_repetitions_lengths else 0 ) label_selectbox = ( "Length of the repetitions (that will determine the repetitions ratio)." ) repetitions_length = st.sidebar.selectbox( label=label_selectbox, options=val_repetitions_lengths, index=default_index, ) st.sidebar.caption( "Choosing a higher or lower number does not mean that the filtering " "is stronger or weaker. Be careful, choosing a low number (below 5 for languages like English) " "tends to associate a high repetitions ratio to very long documents (like book chapters), but with " "few or no repetitions, simply because their length gives them more diversity, and we do " "not want to discard such documents." ) self.docs = self.docs_checkpoint for i in range(len(self.docs["repetitions_ratio"])): self.docs["repetitions_ratio"].iloc[i] = self.docs["repetitions_ratio"].iloc[i][repetitions_length] cutoff_def = "If the repetitions ratio of a document is higher than this number, the document is removed." cutoff_repetitions_ratio = st.sidebar.slider( cutoff_def, 0.0, 1.0, 1.0, step=0.01 ) new_key = ( "repetitions_ratio", cutoff_repetitions_ratio, True, ) keys.append(new_key) cond = get_cond(new_key[0], new_key[1], new_key[2]) print_discared_by_cond(cond) conds["repetitions_ratio"] = [cond] if "special_characters_ratio" in columns: cutoff_def = "If the special characters ratio of a document is higher than this number, the document is removed." cutoff_special_characters_ratio = st.sidebar.slider( cutoff_def, 0.0, 1.0, 1.0, step=0.01 ) new_key = ( "special_characters_ratio", cutoff_special_characters_ratio, True, ) keys.append(new_key) cond = get_cond(new_key[0], new_key[1], new_key[2]) print_discared_by_cond(cond) conds["special_characters_ratio"] = [cond] if "stopwords_ratio" in columns: cutoff_def = "If the stop words ratio of a document is lower than this number, the document is removed." cutoff_stopwords_ratio = st.sidebar.slider( cutoff_def, 0.0, 1.0, 0.0, step=0.01 ) new_key = ("stopwords_ratio", cutoff_stopwords_ratio, False) keys.append(new_key) cond = get_cond(new_key[0], new_key[1], new_key[2]) print_discared_by_cond(cond) conds["stopwords_ratio"] = [cond] if "badwords_ratio" in columns: cutoff_def = "If the bad words ratio of a document is higher than this number, the document is removed." cutoff_badwords_ratio = st.sidebar.slider( cutoff_def, 0.0, 1.0, 1.0, step=0.01 ) new_key = ("badwords_ratio", cutoff_badwords_ratio, True) keys.append(new_key) cond = get_cond(new_key[0], new_key[1], new_key[2]) print_discared_by_cond(cond) conds["badwords_ratio"] = [cond] if "lang_id_score" in columns: cutoff_def = "If the confidence score for the language identification prediction of a document is lower than this number, the document is removed." cutoff_lang_id_score = st.sidebar.slider( cutoff_def, 0.0, 1.0, 0.0, step=0.01 ) new_key = ("lang_id_score", cutoff_lang_id_score, False) keys.append(new_key) cond = get_cond(new_key[0], new_key[1], new_key[2]) print_discared_by_cond(cond) conds["lang_id_score"] = [cond] if "perplexity_score" in columns: cutoff_def = "If the perplexity score of a document is higher than this number, the document is removed." max_pp = int(np.max(self.docs["perplexity_score"])) + 1 cutoff_perplexity_score = st.sidebar.slider( cutoff_def, 0, max_pp, max_pp ) new_key = ("perplexity_score", cutoff_perplexity_score, True) keys.append(new_key) cond = get_cond(new_key[0], new_key[1], new_key[2]) print_discared_by_cond(cond) conds["perplexity_score"] = [cond] return keys, conds self.keys, conds = set_sliders() all_conds = [subcond for cond in list(conds.values()) for subcond in cond] all_conds = np.all(all_conds, axis=0) st.header("Filtering on documents") def display_dataset(cond, description): displayed_docs = self.docs.loc[cond] st.subheader( f"{description}: {len(displayed_docs)} docs ({len(displayed_docs) / self.num_docs * 100:.2f}%)" ) st.markdown( "Click on a column to sort by it, place the cursor on the text to display it." ) st.dataframe(displayed_docs) display_dataset(np.invert(all_conds), "Discarded documents") # st.subheader("Display discarded documents by filter") display_discarded_documents_by_filter = st.checkbox( "Display discarded documents by filter" ) if display_discarded_documents_by_filter: columns = list(self.docs) if "number_words" in columns: cond_filter = np.invert(np.all(conds["number_words"], axis=0)) display_dataset( cond_filter, "Discarded documents for the filter on the number of words", ) if "repetitions_ratio" in columns: cond_filter = np.invert(np.all(conds["repetitions_ratio"], axis=0)) display_dataset( cond_filter, "Discarded documents for the filter on the repetitions ratio", ) if "special_characters_ratio" in columns: cond_filter = np.invert( np.all(conds["special_characters_ratio"], axis=0) ) display_dataset( cond_filter, "Discarded documents for the filter on the special characters ratio", ) if "stopwords_ratio" in columns: cond_filter = np.invert(np.all(conds["stopwords_ratio"], axis=0)) display_dataset( cond_filter, "Discarded documents for the filter on the stop words ratio", ) if "badwords_ratio" in columns: cond_filter = np.invert(np.all(conds["badwords_ratio"], axis=0)) display_dataset( cond_filter, "Discarded documents for the filter on the bad words ratio", ) if "lang_id_score" in columns: cond_filter = np.invert(np.all(conds["lang_id_score"], axis=0)) display_dataset( cond_filter, "Discarded documents for the filter on the language identification confidence score", ) if "perplexity_score" in columns: cond_filter = np.invert(np.all(conds["perplexity_score"], axis=0)) display_dataset( cond_filter, "Discarded documents for the filter on the perplexity score", ) display_dataset(all_conds, "Retained documents") def filtering_of_words(self): if not (self.words is None): st.sidebar.subheader("Parameter of the filtering on words") cutoff_def = "If the length of a word is higher than this number, the word is removed." max_len_word = min(int(np.max(self.words["len_word"])) + 1, 200) cutoff_word = st.sidebar.slider(cutoff_def, 0, max_len_word, max_len_word) incorrect_substrings = st.sidebar.checkbox( "Remove words with incorrect substrings." ) cond_words = self.words["len_word"] <= cutoff_word if incorrect_substrings: cond_words = cond_words & np.invert(self.words["incorrect_substring"]) st.header("Filtering on words") st.markdown( f"Since the number of words is way larger than the number of documents, " f"we consider in this section words for the first {self.num_docs_for_words} documents only." ) discarded_words = self.words.loc[np.invert(cond_words)] st.subheader( f"Discarded words: {len(discarded_words)} words ({len(discarded_words) / len(self.words) * 100:.2f}%)" ) st.markdown( "Click on a column to sort by it, place the cursor on the text to display it." ) st.dataframe(discarded_words) retained_words = self.words.loc[cond_words] st.subheader( f"Retained words: {len(retained_words)} words ({len(retained_words) / len(self.words) * 100:.2f}%)" ) st.markdown( "Click on a column to sort by it, place the cursor on the text to display it." ) st.dataframe(retained_words) def plot_distributions_filtering_parameters(self): st.header("Distributions of the filtering parameters") display_distributions = st.checkbox("Display distributions") if display_distributions: def plot_hist(dataframe, key, num_bins=50): st.subheader(" ".join(key.split("_"))) hist_values = dataframe[key].values max_range = np.max(hist_values) hist_values = np.histogram( hist_values, bins=num_bins, range=(0, max_range) )[0] st.bar_chart(hist_values) st.markdown(f"Each bin is of size: {max_range/num_bins}.") for key in list({el[0]: None for el in self.keys}): plot_hist(self.docs, key) if not (self.words is None): plot_hist(self.words, "len_word") def plot_zipf_law(self): if not (self.words is None): st.header("Zipf's Law") display_zipf_law = st.checkbox("Display Zipf's Law") if display_zipf_law: freq_words = {} for _, row in self.words.iterrows(): freq_words[row["word"]] = freq_words.get(row["word"], 0) + 1 freq_words = np.array(list(freq_words.values())) freq_words = -np.sort(-freq_words) fig, ax = plt.subplots() ax.loglog(freq_words) ax.set_title("Zipf's Law") ax.set_xlabel("$i$-th most frequent word") ax.set_ylabel("frequency in the documents") st.pyplot(fig) def download_data(self): st.header("Download data") with open(self.path_data) as json_file: btn = st.download_button( label="Download data as json", data=json_file, file_name="data.json", ) def visualization(self): self.preamble() self.open_data() self.set_title() self.filtering_of_docs() self.filtering_of_words() self.plot_distributions_filtering_parameters() #self.plot_zipf_law() self.download_data() path_instructions = "./explanation_filtering_pipeline.pdf" path_data = "./en_examples_with_stats.json" lang = "English" num_docs = 5000 num_docs_for_words = 500 max_len_text_display = 10000 visualization = Visualization( path_instructions, path_data, lang, num_docs, num_docs_for_words, max_len_text_display, ) visualization.visualization()