# Run with: streamlit run visualization.py import streamlit as st import os import base64 import json import pandas as pd import numpy as np import matplotlib.pyplot as plt class Visualization: def __init__( self, path_instructions, path_data, lang, num_docs, num_docs_for_words, max_len_text_display ): self.path_instructions = path_instructions self.path_data = path_data self.lang = lang self.num_docs = num_docs self.num_docs_for_words = num_docs_for_words self.max_len_text_display = max_len_text_display def preamble(self): st.markdown("Before diving into this demo, you might want to take a look at how the filtering pipeline of OSCAR looks like in more detail.") def get_binary_file_downloader_html(bin_file, file_label='File'): with open(bin_file, 'rb') as f: data = f.read() bin_str = base64.b64encode(data).decode() href = f'{file_label}' return href st.markdown(get_binary_file_downloader_html(self.path_instructions, "Download the filtering pipeline of OSCAR as pdf"), unsafe_allow_html=True) def open_data(self): with open(self.path_data) as json_file: data = json.load(json_file) self.num_docs = min(self.num_docs, len(data)) self.num_docs_for_words = min(self.num_docs_for_words, len(data)) words = [doc["words"] for doc in data[: self.num_docs_for_words]] words = [word for doc in words for word in doc] self.words = pd.DataFrame(words) docs = data[: self.num_docs] for doc in docs: del doc["words"] if len(doc["text"]) > self.max_len_text_display: doc["text"] = ( doc["text"][: self.max_len_text_display] + " [...] [THIS LONG TEXT HAS BEEN TRUNCATED FOR DISPLAY REASONS]" ) self.docs = pd.DataFrame(docs) def set_title(self): st.title(f"{self.num_docs} {self.lang} documents from OSCAR with their stats.") def filtering_of_docs(self): st.sidebar.subheader("Parameters of the filtering on documents") def set_sliders(docs): columns = list(docs) keys = [] conds = {} def get_cond(key, cutoff, max_cutoff): if max_cutoff: return self.docs[key] <= cutoff return self.docs[key] >= cutoff def print_discared_by_cond(cond): st.sidebar.caption( f"{(len(cond) - np.sum(1*cond)) / len(cond) * 100:.2f}% of the total is discarded with this filter." ) st.sidebar.caption("---------") if "number_words" in columns: cutoff_def = "If the number of words of a document is lower than this number, the document is removed." max_nb_words = int(np.max(docs["number_words"])) + 1 cutoff_min_number_words = st.sidebar.slider( cutoff_def, 0, min(max_nb_words, 500), 0 ) new_key = ("number_words", cutoff_min_number_words, False) keys.append(new_key) cond_1 = get_cond(new_key[0], new_key[1], new_key[2]) print_discared_by_cond(cond_1) cutoff_def = "If the number of words of a document is higher than this number, the document is removed." cutoff_max_number_words = st.sidebar.slider( cutoff_def, 0, max_nb_words, max_nb_words ) new_key = ("number_words", cutoff_max_number_words, True) keys.append(new_key) cond_2 = get_cond(new_key[0], new_key[1], new_key[2]) print_discared_by_cond(cond_2) conds["number_words"] = [cond_1, cond_2] if "special_characters_ratio" in columns: cutoff_def = "If the special characters ratio of a document is higher than this number, the document is removed." cutoff_special_characters_ratio = st.sidebar.slider( cutoff_def, 0.0, 1.0, 1.0, step=0.01 ) new_key = ( "special_characters_ratio", cutoff_special_characters_ratio, True, ) keys.append(new_key) cond = get_cond(new_key[0], new_key[1], new_key[2]) print_discared_by_cond(cond) conds["special_characters_ratio"] = [cond] if "stopwords_ratio" in columns: cutoff_def = "If the stop words ratio of a document is lower than this number, the document is removed." cutoff_stopwords_ratio = st.sidebar.slider( cutoff_def, 0.0, 1.0, 0.0, step=0.01 ) new_key = ("stopwords_ratio", cutoff_stopwords_ratio, False) keys.append(new_key) cond = get_cond(new_key[0], new_key[1], new_key[2]) print_discared_by_cond(cond) conds["stopwords_ratio"] = [cond] if "badwords_ratio" in columns: cutoff_def = "If the bad words ratio of a document is higher than this number, the document is removed." cutoff_badwords_ratio = st.sidebar.slider( cutoff_def, 0.0, 1.0, 1.0, step=0.01 ) new_key = ("badwords_ratio", cutoff_badwords_ratio, True) keys.append(new_key) cond = get_cond(new_key[0], new_key[1], new_key[2]) print_discared_by_cond(cond) conds["badwords_ratio"] = [cond] if "lang_id_score" in columns: cutoff_def = "If the confidence score for the language identification prediction of a document is lower than this number, the document is removed." cutoff_lang_id_score = st.sidebar.slider( cutoff_def, 0.0, 1.0, 0.0, step=0.01 ) new_key = ("lang_id_score", cutoff_lang_id_score, False) keys.append(new_key) cond = get_cond(new_key[0], new_key[1], new_key[2]) print_discared_by_cond(cond) conds["lang_id_score"] = [cond] if "perplexity_score" in columns: cutoff_def = "If the perplexity score of a document is higher than this number, the document is removed." max_pp = int(np.max(docs["perplexity_score"])) + 1 cutoff_perplexity_score = st.sidebar.slider( cutoff_def, 0, max_pp, max_pp ) new_key = ("perplexity_score", cutoff_perplexity_score, True) keys.append(new_key) cond = get_cond(new_key[0], new_key[1], new_key[2]) print_discared_by_cond(cond) conds["perplexity_score"] = [cond] return keys, conds self.keys, conds = set_sliders(self.docs) all_conds = [subcond for cond in list(conds.values()) for subcond in cond] all_conds = np.all(all_conds, axis=0) st.header("Filtering on documents") def display_dataset(cond, description): displayed_docs = self.docs.loc[cond] st.subheader( f"{description}: {len(displayed_docs)} docs ({len(displayed_docs) / self.num_docs * 100:.2f}%)" ) st.markdown( "Click on a column to sort by it, place the cursor on the text to display it." ) st.dataframe(displayed_docs) display_dataset(np.invert(all_conds), "Discarded documents") #st.subheader("Display discarded documents by filter") display_discarded_documents_by_filter = st.checkbox("Display discarded documents by filter") if display_discarded_documents_by_filter: columns = list(self.docs) if "number_words" in columns: cond_filter = np.invert(np.all(conds["number_words"], axis=0)) display_dataset(cond_filter, "Discarded documents for the filter on the number of words") if "special_characters_ratio" in columns: cond_filter = np.invert(np.all(conds["special_characters_ratio"], axis=0)) display_dataset(cond_filter, "Discarded documents for the filter on the special characters ratio") if "stopwords_ratio" in columns: cond_filter = np.invert(np.all(conds["stopwords_ratio"], axis=0)) display_dataset(cond_filter, "Discarded documents for the filter on the stop words ratio") if "badwords_ratio" in columns: cond_filter = np.invert(np.all(conds["badwords_ratio"], axis=0)) display_dataset(cond_filter, "Discarded documents for the filter on the bad words ratio") if "lang_id_score" in columns: cond_filter = np.invert(np.all(conds["lang_id_score"], axis=0)) display_dataset(cond_filter, "Discarded documents for the filter on the language identification confidence score") if "perplexity_score" in columns: cond_filter = np.invert(np.all(conds["perplexity_score"], axis=0)) display_dataset(cond_filter, "Discarded documents for the filter on the perplexity score") display_dataset(all_conds, "Retained documents") def filtering_of_words(self): st.sidebar.subheader("Parameter of the filtering on words") cutoff_def = ( "If the length of a word is higher than this number, the word is removed." ) max_len_word = min(int(np.max(self.words["len_word"])) + 1, 200) cutoff_word = st.sidebar.slider(cutoff_def, 0, max_len_word, max_len_word) incorrect_substrings = st.sidebar.checkbox( "Remove words with incorrect substrings." ) cond_words = self.words["len_word"] <= cutoff_word if incorrect_substrings: cond_words = cond_words & np.invert(self.words["incorrect_substring"]) st.header("Filtering on words") st.markdown( f"Since the number of words is way larger than the number of documents, " f"we consider in this section words for the first {self.num_docs_for_words} documents only." ) discarded_words = self.words.loc[np.invert(cond_words)] st.subheader( f"Discarded words: {len(discarded_words)} words ({len(discarded_words) / len(self.words) * 100:.2f}%)" ) st.markdown( "Click on a column to sort by it, place the cursor on the text to display it." ) st.dataframe(discarded_words) retained_words = self.words.loc[cond_words] st.subheader( f"Retained words: {len(retained_words)} words ({len(retained_words) / len(self.words) * 100:.2f}%)" ) st.markdown( "Click on a column to sort by it, place the cursor on the text to display it." ) st.dataframe(retained_words) def plot_distributions_filtering_parameters(self): st.header("Distributions of the filtering parameters") display_distributions = st.checkbox("Display distributions") if display_distributions: def plot_hist(dataframe, key, num_bins=50): st.subheader(" ".join(key.split("_"))) hist_values = dataframe[key].values max_range = np.max(hist_values) hist_values = np.histogram( hist_values, bins=num_bins, range=(0, max_range) )[0] st.bar_chart(hist_values) st.markdown(f"Each bin is of size: {max_range/num_bins}.") for key in list({el[0]: None for el in self.keys}): plot_hist(self.docs, key) plot_hist(self.words, "len_word") def plot_zipf_law(self): st.header("Zipf's Law") display_zipf_law = st.checkbox("Display Zipf's Law") if display_zipf_law: freq_words = {} for _, row in self.words.iterrows(): freq_words[row["word"]] = freq_words.get(row["word"], 0) + 1 freq_words = np.array(list(freq_words.values())) freq_words = -np.sort(-freq_words) fig, ax = plt.subplots() ax.loglog(freq_words) ax.set_title("Zipf's Law") ax.set_xlabel("$i$-th most frequent word") ax.set_ylabel("frequency in the documents") st.pyplot(fig) def download_data(self): st.header("Download data") with open(self.path_data) as json_file: btn = st.download_button( label="Download data as json", data=json_file, file_name="data.json", ) def visualization(self): self.preamble() self.open_data() self.set_title() self.filtering_of_docs() self.filtering_of_words() self.plot_distributions_filtering_parameters() self.plot_zipf_law() self.download_data() path_instructions = "./filtering_pipeline_oscar.pdf" path_data = "./en_examples_with_stats.json" lang = "English" num_docs = 5000 num_docs_for_words = 500 max_len_text_display = 10000 visualization = Visualization( path_instructions, path_data, lang, num_docs, num_docs_for_words, max_len_text_display ) visualization.visualization()