import streamlit as st import json import pandas as pd import math import numpy as np import matplotlib.pyplot as plt def visualization(path_data, lang, num_docs, num_docs_for_words): with open(path_data) as json_file: data = json.load(json_file) num_docs = min(num_docs, len(data)) st.title(f"{num_docs} {lang} documents from Oscar with their stats.") sentences = [doc["text"].split(" ") for doc in data[:num_docs_for_words]] words = set([word for sentence in sentences for word in sentence]) words_data = [{"len_word": len(word), "word": word} for word in words] words_data = pd.DataFrame(words_data) data = data[:num_docs] data = pd.DataFrame(data) columns = list(data) keys = [] values = {} st.header("Filtering based on document content") if "special_%" in columns: special_ratio = st.sidebar.slider( "% filtered by special characters ratio", 0.0, 50.0, 0.0, step=0.1 ) cutoff_index = max(0, math.floor((100 - special_ratio) * len(data.index) / 100) - 1) special_cutoff = np.partition(data["special_%"], cutoff_index)[cutoff_index] st.sidebar.text(f"No docs with <{special_cutoff:.1f}% special chars") keys.append(("special_%", special_cutoff, True)) if "stop_%" in columns: stop_ratio = st.sidebar.slider( "% filtered by stop word ratio", 0.0, 50.0, 0.0, step=0.1 ) cutoff_index = max(0, math.floor(stop_ratio * len(data.index) / 100) - 1) stop_cutoff = np.partition(data["stop_%"], cutoff_index)[cutoff_index] st.sidebar.text(f"No docs with >{stop_cutoff:.2f}% stop words") keys.append(("stop_%", stop_cutoff, False)) @st.cache(suppress_st_warning=True) def recalculate_flagged_words(file): def flagged_word_ratio(text: str, flagged_word_list): return len([word for word in text.split() if word.lower().strip() in flagged_word_list]) / len(text.split()) flagged_word_list = [word.decode().strip() for word in file.readlines()] flagged_word_ratios = [flagged_word_ratio(text, flagged_word_list) * 100 for text in data["text"]] data["flagged_%"] = flagged_word_ratios flagged_word_file = st.sidebar.file_uploader("Upload your own list of flagged words (1 word per line)") if "flagged_%" in columns: flagged_ratio = st.sidebar.slider( "% filtered by flaggedwords ratio", 0.0, 50.0, 0.0, step=0.1 ) flagged_index = max(0, math.floor((100 - flagged_ratio) * len(data.index) / 100) - 1) flagged_cutoff = np.partition(data["flagged_%"], flagged_index)[flagged_index] st.sidebar.text(f"No docs with >{flagged_cutoff:.2f}% flagged words") keys.append(("flagged_%", flagged_cutoff, True)) if "perplexity" in columns: ppl_ratio = st.sidebar.slider( "% filtered by perplexity", 0.0, 50.0, 0.0, step=0.1 ) ppl_index = max(0, math.floor((100 - ppl_ratio) * len(data.index) / 100) - 1) ppl_cutoff = np.partition(data["perplexity"], ppl_index)[ppl_index] st.sidebar.text(f"No docs with >{ppl_cutoff:.0f} perplexity") keys.append(("perplexity", ppl_cutoff, True)) cond = [ (data[key] <= cutoff) if max_cutoff else (data[key] >= cutoff) for key, cutoff, max_cutoff in keys ] cond = np.all(cond, axis=0) data_not_keep = data.loc[np.invert(cond)] st.subheader(f"Filtered data: {np.invert(cond).sum()} docs") st.markdown("Click on a column to sort by it, place the cursor on the text to display it.") st.dataframe(data_not_keep) data_keep = data.loc[cond] st.subheader(f"Kept data: {cond.sum()} docs") st.markdown("Click on a column to sort by it, place the cursor on the text to display it.") st.dataframe(data_keep) # def plot_hist(dataframe, key, num_bins=50): # st.subheader(" ".join(key.split("_"))) # hist_values = dataframe[key].values # max_range = np.max(hist_values) # hist_values = np.histogram(hist_values, bins=num_bins, range=(0, max_range))[0] # st.bar_chart(hist_values) # st.markdown(f"Each bin is of size: {max_range/num_bins}.") # for key, _, _ in keys: # plot_hist(data, key) st.header("Filtering links and concatenated words") max_len_word = int(np.max(words_data["len_word"])) + 1 cutoff_word = st.sidebar.slider("Word length cutoff", 0, max_len_word, max_len_word) cond_words = words_data["len_word"] <= cutoff_word words_keep = words_data.loc[cond_words] st.subheader(f"Words that we keep (for {num_docs_for_words} documents)") st.markdown("Click on a column to sort by it, place the cursor on the text to display it.") st.dataframe(words_keep) words_not_keep = words_data.loc[np.invert(cond_words)] st.subheader(f"Words that are thrown away (for {num_docs_for_words} documents)") st.markdown("Click on a column to sort by it, place the cursor on the text to display it.") st.dataframe(words_not_keep) st.header("Download data") with open(path_data) as json_file: btn = st.download_button( label="Download data as json", data=json_file, file_name="data.json", ) path_data = "./en_examples_with_stats_ldnoob.json" lang = "English" num_docs = 5000 num_docs_for_words = 500 visualization(path_data, lang, num_docs, num_docs_for_words)