Spaces:
Runtime error
Runtime error
File size: 8,123 Bytes
9d38059 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
"""Ingest examples into Weaviate."""
import os
from pathlib import Path
import weaviate
WEAVIATE_URL = os.environ["WEAVIATE_URL"]
client = weaviate.Client(
url=WEAVIATE_URL,
additional_headers={"X-OpenAI-Api-Key": os.environ["OPENAI_API_KEY"]},
)
client.schema.delete_class("Rephrase")
client.schema.delete_class("QA")
client.schema.get()
schema = {
"classes": [
{
"class": "Rephrase",
"description": "Rephrase Examples",
"vectorizer": "text2vec-openai",
"moduleConfig": {
"text2vec-openai": {
"model": "ada",
"modelVersion": "002",
"type": "text",
}
},
"properties": [
{
"dataType": ["text"],
"moduleConfig": {
"text2vec-openai": {
"skip": False,
"vectorizePropertyName": False,
}
},
"name": "content",
},
{
"dataType": ["text"],
"description": "The link",
"moduleConfig": {
"text2vec-openai": {
"skip": True,
"vectorizePropertyName": False,
}
},
"name": "question",
},
{
"dataType": ["text"],
"description": "The link",
"moduleConfig": {
"text2vec-openai": {
"skip": True,
"vectorizePropertyName": False,
}
},
"name": "answer",
},
{
"dataType": ["text"],
"description": "The link",
"moduleConfig": {
"text2vec-openai": {
"skip": True,
"vectorizePropertyName": False,
}
},
"name": "chat_history",
},
],
},
]
}
client.schema.create(schema)
documents = [
{
"question": "how do i load those?",
"chat_history": "Human: What types of memory exist?\nAssistant: \n\nThere are a few different types of memory: Buffer, Summary, and Conversational Memory.",
"answer": "How do I load Buffer, Summary, and Conversational Memory",
},
{
"question": "how do i install this package?",
"chat_history": "",
"answer": "How do I install langchain?",
},
{
"question": "how do I set serpapi_api_key?",
"chat_history": "Human: can you write me a code snippet for that?\nAssistant: \n\nYes, you can create an Agent with a custom LLMChain in LangChain. Here is a [link](https://langchain.readthedocs.io/en/latest/modules/agents/examples/custom_agent.html) to the documentation that provides a code snippet for creating a custom Agent.",
"answer": "How do I set the serpapi_api_key?",
},
{
"question": "What are some methods for data augmented generation?",
"chat_history": "Human: List all methods of an Agent class please\nAssistant: \n\nTo answer your question, you can find a list of all the methods of the Agent class in the [API reference documentation](https://langchain.readthedocs.io/en/latest/modules/agents/reference.html).",
"answer": "What are some methods for data augmented generation?",
},
{
"question": "can you write me a code snippet for that?",
"chat_history": "Human: how do I create an agent with custom LLMChain?\nAssistant: \n\nTo create an Agent with a custom LLMChain in LangChain, you can use the [Custom Agent example](https://langchain.readthedocs.io/en/latest/modules/agents/examples/custom_agent.html). This example shows how to create a custom LLMChain and use an existing Agent class to parse the output. For more information on Agents and Tools, check out the [Key Concepts](https://langchain.readthedocs.io/en/latest/modules/agents/key_concepts.html) documentation.",
"answer": "Can you provide a code snippet for creating an Agent with a custom LLMChain?",
},
]
from langchain.prompts.example_selector.semantic_similarity import \
sorted_values
for d in documents:
d["content"] = " ".join(sorted_values(d))
with client.batch as batch:
for text in documents:
batch.add_data_object(
text,
"Rephrase",
)
client.schema.get()
schema = {
"classes": [
{
"class": "QA",
"description": "Rephrase Examples",
"vectorizer": "text2vec-openai",
"moduleConfig": {
"text2vec-openai": {
"model": "ada",
"modelVersion": "002",
"type": "text",
}
},
"properties": [
{
"dataType": ["text"],
"moduleConfig": {
"text2vec-openai": {
"skip": False,
"vectorizePropertyName": False,
}
},
"name": "content",
},
{
"dataType": ["text"],
"description": "The link",
"moduleConfig": {
"text2vec-openai": {
"skip": True,
"vectorizePropertyName": False,
}
},
"name": "question",
},
{
"dataType": ["text"],
"description": "The link",
"moduleConfig": {
"text2vec-openai": {
"skip": True,
"vectorizePropertyName": False,
}
},
"name": "answer",
},
{
"dataType": ["text"],
"description": "The link",
"moduleConfig": {
"text2vec-openai": {
"skip": True,
"vectorizePropertyName": False,
}
},
"name": "summaries",
},
{
"dataType": ["text"],
"description": "The link",
"moduleConfig": {
"text2vec-openai": {
"skip": True,
"vectorizePropertyName": False,
}
},
"name": "sources",
},
],
},
]
}
client.schema.create(schema)
documents = [
{
"question": "how do i install langchain?",
"answer": "```pip install langchain```",
"summaries": ">Example:\nContent:\n---------\nYou can pip install langchain package by running 'pip install langchain'\n----------\nSource: foo.html",
"sources": "foo.html",
},
{
"question": "how do i import an openai LLM?",
"answer": "```from langchain.llm import OpenAI```",
"summaries": ">Example:\nContent:\n---------\nyou can import the open ai wrapper (OpenAI) from the langchain.llm module\n----------\nSource: bar.html",
"sources": "bar.html",
},
]
from langchain.prompts.example_selector.semantic_similarity import \
sorted_values
for d in documents:
d["content"] = " ".join(sorted_values(d))
with client.batch as batch:
for text in documents:
batch.add_data_object(
text,
"QA",
)
|