Spaces:
Runtime error
Runtime error
import datetime | |
import os | |
import gradio as gr | |
import langchain | |
import pickle | |
from langchain.vectorstores import Weaviate | |
from langchain import OpenAI | |
from chain import get_new_chain1 | |
def get_faiss_store(): | |
with open("docs.pkl", 'rb') as f: | |
faiss_store = pickle.load(f) | |
return faiss_store | |
def set_openai_api_key(api_key, agent): | |
if api_key: | |
os.environ["OPENAI_API_KEY"] = api_key | |
vectorstore = get_faiss_store() | |
rephraser_llm = OpenAI(model_name="text-davinci-003", temperature=0) | |
final_output_llm = OpenAI(model_name="text-davinci-003", temperature=0, max_tokens=-1) | |
qa_chain = get_new_chain1(vectorstore, rephraser_llm, final_output_llm) | |
os.environ["OPENAI_API_KEY"] = "" | |
return qa_chain | |
def chat(inp, history, agent): | |
history = history or [] | |
if agent is None: | |
history.append((inp, "Please paste your OpenAI key to use")) | |
return history, history | |
print("\n==== date/time: " + str(datetime.datetime.now()) + " ====") | |
print("inp: " + inp) | |
history = history or [] | |
output = agent({"question": inp, "chat_history": history}) | |
answer = output["answer"] | |
history.append((inp, answer)) | |
print(history) | |
return history, history | |
block = gr.Blocks(css=".gradio-container {background-color: lightgray}") | |
with block: | |
with gr.Row(): | |
gr.Markdown("<h3><center>Hugging Face Doc Search</center></h3>") | |
openai_api_key_textbox = gr.Textbox( | |
placeholder="Paste your OpenAI API key (sk-...)", | |
show_label=False, | |
lines=1, | |
type="password", | |
) | |
chatbot = gr.Chatbot() | |
with gr.Row(): | |
message = gr.Textbox( | |
label="What's your question?", | |
placeholder="What's the answer to life, the universe, and everything?", | |
lines=1, | |
) | |
submit = gr.Button(value="Send", variant="secondary").style(full_width=False) | |
gr.Examples( | |
examples=[ | |
"How do I install transformers?", | |
"How do I load pretrained instances with an AutoClass?", | |
"How do I fine-tune a pretrained model?", | |
], | |
inputs=message, | |
) | |
gr.HTML( | |
""" | |
This simple application uses Langchain, an LLM, and FAISS to do Q&A over the Hugging Face Documentation.""" | |
) | |
gr.HTML( | |
"<center>Powered by <a href='huggingface.co'>Hugging Face 🤗</a> and <a href='https://github.com/hwchase17/langchain'>LangChain 🦜️🔗</a></center>" | |
) | |
state = gr.State() | |
agent_state = gr.State() | |
submit.click(chat, inputs=[message, state, agent_state], outputs=[chatbot, state]) | |
message.submit(chat, inputs=[message, state, agent_state], outputs=[chatbot, state]) | |
openai_api_key_textbox.change( | |
set_openai_api_key, | |
inputs=[openai_api_key_textbox, agent_state], | |
outputs=[agent_state], | |
) | |
block.launch(debug=True) | |