Spaces:
Runtime error
Runtime error
Update ingest_examples.py
Browse files- ingest_examples.py +39 -199
ingest_examples.py
CHANGED
@@ -1,219 +1,59 @@
|
|
1 |
-
"""Ingest examples into
|
2 |
import os
|
3 |
from pathlib import Path
|
4 |
-
|
5 |
-
import
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
client.schema.delete_class("Rephrase")
|
14 |
-
client.schema.delete_class("QA")
|
15 |
-
client.schema.get()
|
16 |
-
schema = {
|
17 |
-
"classes": [
|
18 |
-
{
|
19 |
-
"class": "Rephrase",
|
20 |
-
"description": "Rephrase Examples",
|
21 |
-
"vectorizer": "text2vec-openai",
|
22 |
-
"moduleConfig": {
|
23 |
-
"text2vec-openai": {
|
24 |
-
"model": "ada",
|
25 |
-
"modelVersion": "002",
|
26 |
-
"type": "text",
|
27 |
-
}
|
28 |
-
},
|
29 |
-
"properties": [
|
30 |
-
{
|
31 |
-
"dataType": ["text"],
|
32 |
-
"moduleConfig": {
|
33 |
-
"text2vec-openai": {
|
34 |
-
"skip": False,
|
35 |
-
"vectorizePropertyName": False,
|
36 |
-
}
|
37 |
-
},
|
38 |
-
"name": "content",
|
39 |
-
},
|
40 |
-
{
|
41 |
-
"dataType": ["text"],
|
42 |
-
"description": "The link",
|
43 |
-
"moduleConfig": {
|
44 |
-
"text2vec-openai": {
|
45 |
-
"skip": True,
|
46 |
-
"vectorizePropertyName": False,
|
47 |
-
}
|
48 |
-
},
|
49 |
-
"name": "question",
|
50 |
-
},
|
51 |
-
{
|
52 |
-
"dataType": ["text"],
|
53 |
-
"description": "The link",
|
54 |
-
"moduleConfig": {
|
55 |
-
"text2vec-openai": {
|
56 |
-
"skip": True,
|
57 |
-
"vectorizePropertyName": False,
|
58 |
-
}
|
59 |
-
},
|
60 |
-
"name": "answer",
|
61 |
-
},
|
62 |
-
{
|
63 |
-
"dataType": ["text"],
|
64 |
-
"description": "The link",
|
65 |
-
"moduleConfig": {
|
66 |
-
"text2vec-openai": {
|
67 |
-
"skip": True,
|
68 |
-
"vectorizePropertyName": False,
|
69 |
-
}
|
70 |
-
},
|
71 |
-
"name": "chat_history",
|
72 |
-
},
|
73 |
-
],
|
74 |
-
},
|
75 |
-
]
|
76 |
-
}
|
77 |
-
|
78 |
-
client.schema.create(schema)
|
79 |
-
|
80 |
-
documents = [
|
81 |
{
|
82 |
"question": "how do i load those?",
|
83 |
-
"chat_history": "Human: What types of
|
84 |
-
"answer": "How do I load
|
85 |
},
|
86 |
{
|
87 |
"question": "how do i install this package?",
|
88 |
"chat_history": "",
|
89 |
-
"answer": "How do I install
|
90 |
},
|
91 |
{
|
92 |
-
"question": "
|
93 |
-
"chat_history": "Human: can you write me a code snippet for that?\nAssistant: \n\nYes, you can
|
94 |
-
"answer": "
|
95 |
},
|
96 |
{
|
97 |
-
"question": "
|
98 |
-
"chat_history": "Human: List all methods of
|
99 |
-
"answer": "What are some methods for
|
100 |
},
|
101 |
{
|
102 |
"question": "can you write me a code snippet for that?",
|
103 |
-
"chat_history": "Human: how do I
|
104 |
-
"answer": "Can you provide a code snippet for
|
105 |
},
|
|
|
|
|
|
|
|
|
|
|
106 |
]
|
107 |
-
from langchain.prompts.example_selector.semantic_similarity import \
|
108 |
-
sorted_values
|
109 |
-
|
110 |
-
for d in documents:
|
111 |
-
d["content"] = " ".join(sorted_values(d))
|
112 |
-
with client.batch as batch:
|
113 |
-
for text in documents:
|
114 |
-
batch.add_data_object(
|
115 |
-
text,
|
116 |
-
"Rephrase",
|
117 |
-
)
|
118 |
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
"modelVersion": "002",
|
130 |
-
"type": "text",
|
131 |
-
}
|
132 |
-
},
|
133 |
-
"properties": [
|
134 |
-
{
|
135 |
-
"dataType": ["text"],
|
136 |
-
"moduleConfig": {
|
137 |
-
"text2vec-openai": {
|
138 |
-
"skip": False,
|
139 |
-
"vectorizePropertyName": False,
|
140 |
-
}
|
141 |
-
},
|
142 |
-
"name": "content",
|
143 |
-
},
|
144 |
-
{
|
145 |
-
"dataType": ["text"],
|
146 |
-
"description": "The link",
|
147 |
-
"moduleConfig": {
|
148 |
-
"text2vec-openai": {
|
149 |
-
"skip": True,
|
150 |
-
"vectorizePropertyName": False,
|
151 |
-
}
|
152 |
-
},
|
153 |
-
"name": "question",
|
154 |
-
},
|
155 |
-
{
|
156 |
-
"dataType": ["text"],
|
157 |
-
"description": "The link",
|
158 |
-
"moduleConfig": {
|
159 |
-
"text2vec-openai": {
|
160 |
-
"skip": True,
|
161 |
-
"vectorizePropertyName": False,
|
162 |
-
}
|
163 |
-
},
|
164 |
-
"name": "answer",
|
165 |
-
},
|
166 |
-
{
|
167 |
-
"dataType": ["text"],
|
168 |
-
"description": "The link",
|
169 |
-
"moduleConfig": {
|
170 |
-
"text2vec-openai": {
|
171 |
-
"skip": True,
|
172 |
-
"vectorizePropertyName": False,
|
173 |
-
}
|
174 |
-
},
|
175 |
-
"name": "summaries",
|
176 |
-
},
|
177 |
-
{
|
178 |
-
"dataType": ["text"],
|
179 |
-
"description": "The link",
|
180 |
-
"moduleConfig": {
|
181 |
-
"text2vec-openai": {
|
182 |
-
"skip": True,
|
183 |
-
"vectorizePropertyName": False,
|
184 |
-
}
|
185 |
-
},
|
186 |
-
"name": "sources",
|
187 |
-
},
|
188 |
-
],
|
189 |
-
},
|
190 |
-
]
|
191 |
-
}
|
192 |
-
|
193 |
-
client.schema.create(schema)
|
194 |
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
"answer": "```pip install langchain```",
|
199 |
-
"summaries": ">Example:\nContent:\n---------\nYou can pip install langchain package by running 'pip install langchain'\n----------\nSource: foo.html",
|
200 |
-
"sources": "foo.html",
|
201 |
-
},
|
202 |
-
{
|
203 |
-
"question": "how do i import an openai LLM?",
|
204 |
-
"answer": "```from langchain.llm import OpenAI```",
|
205 |
-
"summaries": ">Example:\nContent:\n---------\nyou can import the open ai wrapper (OpenAI) from the langchain.llm module\n----------\nSource: bar.html",
|
206 |
-
"sources": "bar.html",
|
207 |
-
},
|
208 |
-
]
|
209 |
-
from langchain.prompts.example_selector.semantic_similarity import \
|
210 |
-
sorted_values
|
211 |
|
212 |
-
|
213 |
-
d["content"] = " ".join(sorted_values(d))
|
214 |
-
with client.batch as batch:
|
215 |
-
for text in documents:
|
216 |
-
batch.add_data_object(
|
217 |
-
text,
|
218 |
-
"QA",
|
219 |
-
)
|
|
|
1 |
+
"""Ingest examples into FAISS."""
|
2 |
import os
|
3 |
from pathlib import Path
|
4 |
+
import pickle
|
5 |
+
from langchain.vectorstores import FAISS
|
6 |
+
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceEmbeddings
|
7 |
+
from langchain.text_splitter import CharacterTextSplitter
|
8 |
+
from langchain.prompts.example_selector import \
|
9 |
+
SemanticSimilarityExampleSelector
|
10 |
+
|
11 |
+
rephrase_documents = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
{
|
13 |
"question": "how do i load those?",
|
14 |
+
"chat_history": "Human: What types of tasks can I do with Pipelines?\nAssistant: \n\nThere are a few different types of tasks pipelines can do. Some examples: Text classification, Text generation, name entity recognition, question answering, summarization, translation, image classification, image segmentation, object detection, audio classification, and visual question answering.",
|
15 |
+
"answer": "How do I load a pipeline for a specific task",
|
16 |
},
|
17 |
{
|
18 |
"question": "how do i install this package?",
|
19 |
"chat_history": "",
|
20 |
+
"answer": "How do I install transformers?",
|
21 |
},
|
22 |
{
|
23 |
+
"question": "where do i find the models?",
|
24 |
+
"chat_history": "Human: can you write me a code snippet for that?\nAssistant: \n\nYes, you can load a pretained model with the from_pretrained() method. Here is a [link](https://huggingface.co/docs/transformers/autoclass_tutorial) to the documentation that provides a code snippet for loading a pretrained model with AutoClass.",
|
25 |
+
"answer": "Where do I find the models that can be loaded into an autoclass?",
|
26 |
},
|
27 |
{
|
28 |
+
"question": "how do I finetune a pre-trained model?",
|
29 |
+
"chat_history": "Human: List all methods of a pipeline please\nAssistant: \n\nTo answer your question, you can find a list of all the methods of the Pipeline class in the [API reference documentation](https://huggingface.co/docs/transformers/main_classes/pipelines).",
|
30 |
+
"answer": "What are some methods for finetuning a pre-trained model?",
|
31 |
},
|
32 |
{
|
33 |
"question": "can you write me a code snippet for that?",
|
34 |
+
"chat_history": "Human: how do I do train on multiple gpus?\nAssistant: \n\nTo perform distributed training, you can use the [Accelerate](https://huggingface.co/docs/transformers/accelerate) library. This example shows how to perform distributed training on multiple GPUs with accelerate. For more information on distributed training, check out the [Full Accelerate Documentation](https://huggingface.co/docs/accelerate/).",
|
35 |
+
"answer": "Can you provide a code snippet for training on multiple GPUs with accelerate?",
|
36 |
},
|
37 |
+
{
|
38 |
+
"question": "show me how to do it with trainer",
|
39 |
+
"chat_history": "Human: How do I finetune a pre-trained model?\nAssistant: \n\nYou can fine-tune a pretrained model with 🤗 Transformers Trainer, in TensorFlow with Keras, and in native PyTorch. For more information on how to do this, visit our [training tutorial](https://huggingface.co/docs/transformers/training)",
|
40 |
+
"answer": "How do I finetune a pre-trained model with Transformers trainer?",
|
41 |
+
}
|
42 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
example_selector = SemanticSimilarityExampleSelector.from_examples(
|
45 |
+
# This is the list of examples available to select from.
|
46 |
+
rephrase_documents,
|
47 |
+
# This is the embedding class used to produce embeddings which are used to measure semantic similarity.
|
48 |
+
HuggingFaceEmbeddings(),
|
49 |
+
# This is the VectorStore class that is used to store the embeddings and do a similarity search over.
|
50 |
+
FAISS,
|
51 |
+
# This is the number of examples to produce.
|
52 |
+
k=4
|
53 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
+
print("beginning pickle")
|
56 |
+
with open("rephrase_eg.pkl", 'wb') as f:
|
57 |
+
pickle.dump(example_selector, f)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
print("Rephrase pickle complete")
|
|
|
|
|
|
|
|
|
|
|
|
|
|