import json import os import pathlib import pickle from typing import Dict, List, Tuple import weaviate from langchain import OpenAI, PromptTemplate from langchain.chains import LLMChain from langchain.chains.base import Chain from langchain.chains.combine_documents.base import BaseCombineDocumentsChain from langchain.chains.conversation.memory import ConversationBufferMemory from langchain.chains.question_answering import load_qa_chain from langchain.embeddings import OpenAIEmbeddings from langchain.prompts import FewShotPromptTemplate, PromptTemplate from langchain.prompts.example_selector import \ SemanticSimilarityExampleSelector from langchain.vectorstores import FAISS, Weaviate from pydantic import BaseModel class CustomChain(Chain, BaseModel): vstore: FAISS chain: BaseCombineDocumentsChain key_word_extractor: Chain @property def input_keys(self) -> List[str]: return ["question"] @property def output_keys(self) -> List[str]: return ["answer"] def _call(self, inputs: Dict[str, str]) -> Dict[str, str]: question = inputs["question"] chat_history_str = _get_chat_history(inputs["chat_history"]) if chat_history_str: new_question = self.key_word_extractor.run( question=question, chat_history=chat_history_str ) else: new_question = question print(new_question) docs = self.vstore.similarity_search(new_question, k=4) new_inputs = inputs.copy() new_inputs["question"] = new_question new_inputs["chat_history"] = chat_history_str answer, _ = self.chain.combine_docs(docs, **new_inputs) return {"answer": answer} def get_new_chain1(vectorstore, rephraser_llm, final_output_llm) -> Chain: _eg_template = """## Example: Chat History: {chat_history} Follow Up Input: {question} Standalone question: {answer}""" _eg_prompt = PromptTemplate( template=_eg_template, input_variables=["chat_history", "question", "answer"], ) _prefix = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question. You should assume that the question is related to Hugging Face Code.""" _suffix = """## Example: Chat History: {chat_history} Follow Up Input: {question} Standalone question:""" #### LOAD VSTORE WITH REPHRASE EXAMPLES with open("rephrase_eg.pkl", 'rb') as f: rephrase_example_selector = pickle.load(f) prompt = FewShotPromptTemplate( prefix=_prefix, suffix=_suffix, example_selector=rephrase_example_selector, example_prompt=_eg_prompt, input_variables=["question", "chat_history"], ) key_word_extractor = LLMChain(llm=rephraser_llm, prompt=prompt) EXAMPLE_PROMPT = PromptTemplate( template=">Example:\nContent:\n---------\n{page_content}\n----------\nSource: {source}", input_variables=["page_content", "source"], ) template = """You are an AI assistant for the open source transformers library provided by Hugging Face. The documentation is located at https://huggingface.co/docs/transformers. You are given the following extracted parts of a long document and a question. Provide a conversational answer with a hyperlink to the documentation. Do NOT add .html to the end of links. You should only use hyperlinks that are explicitly listed as a source in the context. Do NOT make up a hyperlink that is not listed. If the question includes a request for code, provide a code block directly from the documentation. For example, if someone asks how to install Transformers, you should say: You can install with pip, for more info view the **(documentation)**[https://huggingface.co/docs/transformers/installation] '''py pip install transformers ''' If you don't know the answer, just say "Hmm, I'm not sure." Don't try to make up an answer. If the question is not about Hugging Face Transformers, politely inform them that you are tuned to only answer questions about Transformers. Question: {question} ========= {context} ========= Answer in Markdown:""" PROMPT = PromptTemplate(template=template, input_variables=["question", "context"]) doc_chain = load_qa_chain( final_output_llm, chain_type="stuff", prompt=PROMPT, document_prompt=EXAMPLE_PROMPT, verbose=True ) return CustomChain(chain=doc_chain, vstore=vectorstore, key_word_extractor=key_word_extractor) def _get_chat_history(chat_history: List[Tuple[str, str]]): buffer = "" for human_s, ai_s in chat_history: human = f"Human: " + human_s ai = f"Assistant: " + ai_s buffer += "\n" + "\n".join([human, ai]) return buffer