machineuser commited on
Commit
8b752ac
·
1 Parent(s): 3a652f1

Sync widgets demo

Browse files
packages/tasks/src/tasks/feature-extraction/about.md CHANGED
@@ -1,20 +1,13 @@
1
- ## About the Task
2
-
3
- Feature extraction is the task of building features intended to be informative from a given dataset,
4
- facilitating the subsequent learning and generalization steps in various domains of machine learning.
5
-
6
  ## Use Cases
7
 
8
- Feature extraction can be used to do transfer learning in natural language processing, computer vision and audio models.
9
 
10
  ## Inference
11
 
12
- #### Feature Extraction
13
-
14
  ```python
15
  from transformers import pipeline
16
  checkpoint = "facebook/bart-base"
17
- feature_extractor = pipeline("feature-extraction",framework="pt",model=checkpoint)
18
  text = "Transformers is an awesome library!"
19
 
20
  #Reducing along the first dimension to get a 768 dimensional array
 
 
 
 
 
 
1
  ## Use Cases
2
 
3
+ Models trained on a specific dataset can learn features about the data. For instance, a model trained on an English poetry dataset learns English grammar at a very high level. This information can be transferred to a new model that is going to be trained on tweets. This process of extracting features and transferring to another model is called transfer learning. One can pass their dataset through a feature extraction pipeline and feed the result to a classifier.
4
 
5
  ## Inference
6
 
 
 
7
  ```python
8
  from transformers import pipeline
9
  checkpoint = "facebook/bart-base"
10
+ feature_extractor = pipeline("feature-extraction", framework="pt", model=checkpoint)
11
  text = "Transformers is an awesome library!"
12
 
13
  #Reducing along the first dimension to get a 768 dimensional array
packages/tasks/src/tasks/feature-extraction/data.ts CHANGED
@@ -41,8 +41,7 @@ const taskData: TaskDataCustom = {
41
  },
42
  ],
43
  spaces: [],
44
- summary:
45
- "Feature extraction refers to the process of transforming raw data into numerical features that can be processed while preserving the information in the original dataset.",
46
  widgetModels: ["facebook/bart-base"],
47
  };
48
 
 
41
  },
42
  ],
43
  spaces: [],
44
+ summary: "Feature extraction is the task of extracting features learnt in a model.",
 
45
  widgetModels: ["facebook/bart-base"],
46
  };
47
 
packages/tasks/src/tasks/image-feature-extraction/about.md ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Use Cases
2
+
3
+ ### Transfer Learning
4
+
5
+ Models trained on a specific dataset can learn features about the data. For instance, a model trained on a car classification dataset learns to recognize edges and curves on a very high level and car-specific features on a low level. This information can be transferred to a new model that is going to be trained on classifying trucks. This process of extracting features and transferring to another model is called transfer learning.
6
+
7
+ ### Similarity
8
+
9
+ Features extracted from models contain semantically meaningful information about the world. These features can be used to detect the similarity between two images. Assume there are two images: a photo of a stray cat in a street setting and a photo of a cat at home. These images both contain cats, and the features will contain the information that there's a cat in the image. Thus, comparing the features of a stray cat photo to the features of a domestic cat photo will result in higher similarity compared to any other image that doesn't contain any cats.
10
+
11
+ ## Inference
12
+
13
+ ```python
14
+ import torch
15
+ from transformers import pipeline
16
+
17
+ pipe = pipeline(task="image-feature-extraction", model_name="google/vit-base-patch16-384", framework="pt", pool=True)
18
+ pipe("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/cats.png")
19
+
20
+ feature_extractor(text,return_tensors = "pt")[0].numpy().mean(axis=0)
21
+
22
+ '[[[0.21236686408519745, 1.0919708013534546, 0.8512550592422485, ...]]]'
23
+ ```
packages/tasks/src/tasks/image-feature-extraction/data.ts ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import type { TaskDataCustom } from "..";
2
+
3
+ const taskData: TaskDataCustom = {
4
+ datasets: [
5
+ {
6
+ description:
7
+ "ImageNet-1K is a image classification dataset in which images are used to train image-feature-extraction models.",
8
+ id: "imagenet-1k",
9
+ },
10
+ ],
11
+ demo: {
12
+ inputs: [
13
+ {
14
+ filename: "mask-generation-input.png",
15
+ type: "img",
16
+ },
17
+ ],
18
+ outputs: [
19
+ {
20
+ table: [
21
+ ["Dimension 1", "Dimension 2", "Dimension 3"],
22
+ ["0.21236686408519745", "1.0919708013534546", "0.8512550592422485"],
23
+ ["0.809657871723175", "-0.18544459342956543", "-0.7851548194885254"],
24
+ ["1.3103108406066895", "-0.2479034662246704", "-0.9107287526130676"],
25
+ ["1.8536205291748047", "-0.36419737339019775", "0.09717650711536407"],
26
+ ],
27
+ type: "tabular",
28
+ },
29
+ ],
30
+ },
31
+ metrics: [],
32
+ models: [
33
+ {
34
+ description: "A powerful image feature extraction model.",
35
+ id: "timm/vit_large_patch14_dinov2.lvd142m",
36
+ },
37
+ {
38
+ description: "A strong image feature extraction model.",
39
+ id: "google/vit-base-patch16-224-in21k",
40
+ },
41
+ {
42
+ description: "A robust image feature extraction models.",
43
+ id: "facebook/dino-vitb16",
44
+ },
45
+ ],
46
+ spaces: [],
47
+ summary: "Image feature extraction is the task of extracting features learnt in a computer vision model.",
48
+ widgetModels: [],
49
+ };
50
+
51
+ export default taskData;
packages/tasks/src/tasks/index.ts CHANGED
@@ -8,6 +8,7 @@ import documentQuestionAnswering from "./document-question-answering/data";
8
  import featureExtraction from "./feature-extraction/data";
9
  import fillMask from "./fill-mask/data";
10
  import imageClassification from "./image-classification/data";
 
11
  import imageToImage from "./image-to-image/data";
12
  import imageToText from "./image-to-text/data";
13
  import imageSegmentation from "./image-segmentation/data";
@@ -200,6 +201,7 @@ export const TASKS_DATA: Record<PipelineType, TaskData | undefined> = {
200
  "fill-mask": getData("fill-mask", fillMask),
201
  "graph-ml": undefined,
202
  "image-classification": getData("image-classification", imageClassification),
 
203
  "image-segmentation": getData("image-segmentation", imageSegmentation),
204
  "image-text-to-text": undefined,
205
  "image-to-image": getData("image-to-image", imageToImage),
@@ -239,7 +241,6 @@ export const TASKS_DATA: Record<PipelineType, TaskData | undefined> = {
239
  "zero-shot-object-detection": getData("zero-shot-object-detection", zeroShotObjectDetection),
240
  "text-to-3d": getData("text-to-3d", placeholder),
241
  "image-to-3d": getData("image-to-3d", placeholder),
242
- "image-feature-extraction": getData("image-feature-extraction", placeholder),
243
  } as const;
244
 
245
  export interface ExampleRepo {
 
8
  import featureExtraction from "./feature-extraction/data";
9
  import fillMask from "./fill-mask/data";
10
  import imageClassification from "./image-classification/data";
11
+ import imageFeatureExtraction from "./image-feature-extraction/data";
12
  import imageToImage from "./image-to-image/data";
13
  import imageToText from "./image-to-text/data";
14
  import imageSegmentation from "./image-segmentation/data";
 
201
  "fill-mask": getData("fill-mask", fillMask),
202
  "graph-ml": undefined,
203
  "image-classification": getData("image-classification", imageClassification),
204
+ "image-feature-extraction": getData("image-feature-extraction", imageFeatureExtraction),
205
  "image-segmentation": getData("image-segmentation", imageSegmentation),
206
  "image-text-to-text": undefined,
207
  "image-to-image": getData("image-to-image", imageToImage),
 
241
  "zero-shot-object-detection": getData("zero-shot-object-detection", zeroShotObjectDetection),
242
  "text-to-3d": getData("text-to-3d", placeholder),
243
  "image-to-3d": getData("image-to-3d", placeholder),
 
244
  } as const;
245
 
246
  export interface ExampleRepo {