geninhu's picture
Upload utils.py
14357aa
import math
import numpy as np
import pandas as pd
import gradio as gr
from huggingface_hub import from_pretrained_fastai
from fastai.vision.all import *
from torchvision.models import vgg19, vgg16
pascal_source = '.'
EXAMPLES_PATH = Path('/content/examples')
repo_id = "hugginglearners/fastai-style-transfer"
def get_stl_fs(fs): return fs[:-1]
def style_loss(inp:Tensor, out_feat:Tensor):
"Calculate style loss, assumes we have `im_grams`"
# Get batch size
bs = inp[0].shape[0]
loss = []
# For every item in our inputs
for y, f in zip(*map(get_stl_fs, [im_grams, inp])):
# Calculate MSE
loss.append(F.mse_loss(y.repeat(bs, 1, 1), gram(f)))
# Multiply their sum by 30000
return 3e5 * sum(loss)
class FeatureLoss(Module):
"Combines two losses and features into a useable loss function"
def __init__(self, feats, style_loss, act_loss, hooks, feat_net):
store_attr()
self.hooks = hooks
self.feat_net = feat_net
self.reset_metrics()
def forward(self, pred, targ):
# First get the features of our prediction and target
pred_feat, targ_feat = self.feats(self.feat_net, self.hooks, pred), self.feats(self.feat_net, self.hooks, targ)
# Calculate style and activation loss
style_loss = self.style_loss(pred_feat, targ_feat)
act_loss = self.act_loss(pred_feat, targ_feat)
# Store the loss
self._add_loss(style_loss, act_loss)
# Return the sum
return style_loss + act_loss
def reset_metrics(self):
# Generates a blank metric
self.metrics = dict(style = [], content = [])
def _add_loss(self, style_loss, act_loss):
# Add to our metrics
self.metrics['style'].append(style_loss)
self.metrics['content'].append(act_loss)
def act_loss(inp:Tensor, targ:Tensor):
"Calculate the MSE loss of the activation layers"
return F.mse_loss(inp[-1], targ[-1])
class ReflectionLayer(Module):
"A series of Reflection Padding followed by a ConvLayer"
def __init__(self, in_channels, out_channels, ks=3, stride=2):
reflection_padding = ks // 2
self.reflection_pad = nn.ReflectionPad2d(reflection_padding)
self.conv2d = nn.Conv2d(in_channels, out_channels, ks, stride)
def forward(self, x):
out = self.reflection_pad(x)
out = self.conv2d(out)
return out
class ResidualBlock(Module):
"Two reflection layers and an added activation function with residual"
def __init__(self, channels):
self.conv1 = ReflectionLayer(channels, channels, ks=3, stride=1)
self.in1 = nn.InstanceNorm2d(channels, affine=True)
self.conv2 = ReflectionLayer(channels, channels, ks=3, stride=1)
self.in2 = nn.InstanceNorm2d(channels, affine=True)
self.relu = nn.ReLU()
def forward(self, x):
residual = x
out = self.relu(self.in1(self.conv1(x)))
out = self.in2(self.conv2(out))
out = out + residual
return out
class UpsampleConvLayer(Module):
"Upsample with a ReflectionLayer"
def __init__(self, in_channels, out_channels, ks=3, stride=1, upsample=None):
self.upsample = upsample
reflection_padding = ks // 2
self.reflection_pad = nn.ReflectionPad2d(reflection_padding)
self.conv2d = nn.Conv2d(in_channels, out_channels, ks, stride)
def forward(self, x):
x_in = x
if self.upsample:
x_in = torch.nn.functional.interpolate(x_in, mode='nearest', scale_factor=self.upsample)
out = self.reflection_pad(x_in)
out = self.conv2d(out)
return out
class TransformerNet(Module):
"A simple network for style transfer"
def __init__(self):
# Initial convolution layers
self.conv1 = ReflectionLayer(3, 32, ks=9, stride=1)
self.in1 = nn.InstanceNorm2d(32, affine=True)
self.conv2 = ReflectionLayer(32, 64, ks=3, stride=2)
self.in2 = nn.InstanceNorm2d(64, affine=True)
self.conv3 = ReflectionLayer(64, 128, ks=3, stride=2)
self.in3 = nn.InstanceNorm2d(128, affine=True)
# Residual layers
self.res1 = ResidualBlock(128)
self.res2 = ResidualBlock(128)
self.res3 = ResidualBlock(128)
self.res4 = ResidualBlock(128)
self.res5 = ResidualBlock(128)
# Upsampling Layers
self.deconv1 = UpsampleConvLayer(128, 64, ks=3, stride=1, upsample=2)
self.in4 = nn.InstanceNorm2d(64, affine=True)
self.deconv2 = UpsampleConvLayer(64, 32, ks=3, stride=1, upsample=2)
self.in5 = nn.InstanceNorm2d(32, affine=True)
self.deconv3 = ReflectionLayer(32, 3, ks=9, stride=1)
# Non-linearities
self.relu = nn.ReLU()
def forward(self, X):
y = self.relu(self.in1(self.conv1(X)))
y = self.relu(self.in2(self.conv2(y)))
y = self.relu(self.in3(self.conv3(y)))
y = self.res1(y)
y = self.res2(y)
y = self.res3(y)
y = self.res4(y)
y = self.res5(y)
y = self.relu(self.in4(self.deconv1(y)))
y = self.relu(self.in5(self.deconv2(y)))
y = self.deconv3(y)
return y