File size: 1,125 Bytes
0630ca1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import gradio as gr
import torch
from huggingface_hub import from_pretrained_fastai
from pathlib import Path
examples = ["./examples/image_1.png",
"./examples/image_2.png",
"./examples/image_3.png",
"./examples/image_4.png",
"./examples/image_5.png"]
repo_id = "hugginglearners/rice_image_classification"
path = Path("./")
def get_y(r):
return r["label"]
def get_x(r):
return path/r["fname"]
learner = from_pretrained_fastai(repo_id)
def inference(image):
label_predict,_,probs = learner.predict(image)
return f"This rice image is {label_predict} with {100*probs[torch.argmax(probs)].item():.2f}% probability"
gr.Interface(
fn=inference,
title="Rice image classification",
description = "Predict which type of rice belong to Arborio, Basmati, Ipsala, Jasmine, Karacadag",
inputs="image",
examples=examples,
outputs=gr.Textbox(label='Prediction'),
cache_examples=False,
article = "Author: <a href=\"https://www.linkedin.com/in/vumichien/\">Vu Minh Chien</a>",
).launch(debug=True, enable_queue=True) |