Spaces:
Runtime error
Runtime error
Add application files
Browse files- app.py +17 -0
- poetry.lock +0 -0
- pyproject.toml +20 -0
- src/text_rank_summarizer.py +67 -0
- src/transformer_summarization.py +12 -0
app.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from gradio import inputs
|
3 |
+
# from src.text_rank_summarizer import summarize
|
4 |
+
from src.transformer_summarization import summarize
|
5 |
+
|
6 |
+
long_text_input = inputs.Textbox(lines=200, label='Long Text')
|
7 |
+
summary_lines = inputs.Number(default=4, label='Summary Lines')
|
8 |
+
|
9 |
+
interface = gr.Interface(fn=summarize,
|
10 |
+
inputs=[long_text_input],
|
11 |
+
outputs=['text'],
|
12 |
+
live=False,
|
13 |
+
layout='horizontal',
|
14 |
+
css='css/index.css')
|
15 |
+
|
16 |
+
if __name__ == '__main__':
|
17 |
+
app, local_url, share_url = interface.launch()
|
poetry.lock
ADDED
The diff for this file is too large to render.
See raw diff
|
|
pyproject.toml
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[tool.poetry]
|
2 |
+
name = "text_summarisation_demo"
|
3 |
+
version = "0.1.0"
|
4 |
+
description = ""
|
5 |
+
authors = ["swhustla <fdkelly@gmail.com>"]
|
6 |
+
|
7 |
+
[tool.poetry.dependencies]
|
8 |
+
python = ">=3.9,<3.11"
|
9 |
+
gradio = "pytextrank"
|
10 |
+
Jinja2 = "^3.0.3"
|
11 |
+
pytextrank = "^3.2.3"
|
12 |
+
huggingface = "^0.0.1"
|
13 |
+
transformers = {extras = ["pytorch"], version = "^4.17.0"}
|
14 |
+
torch = "^1.11.0"
|
15 |
+
|
16 |
+
[tool.poetry.dev-dependencies]
|
17 |
+
|
18 |
+
[build-system]
|
19 |
+
requires = ["poetry-core>=1.0.0"]
|
20 |
+
build-backend = "poetry.core.masonry.api"
|
src/text_rank_summarizer.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spacy
|
2 |
+
import pytextrank
|
3 |
+
from math import sqrt
|
4 |
+
from operator import itemgetter
|
5 |
+
|
6 |
+
nlp = spacy.load('en_core_web_sm')
|
7 |
+
nlp.add_pipe('textrank')
|
8 |
+
|
9 |
+
|
10 |
+
def _phrase_vector(doc):
|
11 |
+
phrase_id = 0
|
12 |
+
unit_vector = []
|
13 |
+
sent_bounds = [[s.start, s.end, set([])] for s in doc.sents]
|
14 |
+
|
15 |
+
for p in doc._.phrases:
|
16 |
+
unit_vector.append(p.rank)
|
17 |
+
for chunk in p.chunks:
|
18 |
+
for sent_start, sent_end, sent_vector in sent_bounds:
|
19 |
+
if chunk.start >= sent_start and chunk.end <= sent_end:
|
20 |
+
sent_vector.add(phrase_id)
|
21 |
+
break
|
22 |
+
|
23 |
+
phrase_id += 1
|
24 |
+
|
25 |
+
sum_ranks = sum(unit_vector)
|
26 |
+
return [rank / sum_ranks for rank in unit_vector], sent_bounds
|
27 |
+
|
28 |
+
|
29 |
+
def _sent_rank(unit_vector, sent_bounds):
|
30 |
+
sent_rank = {}
|
31 |
+
sent_id = 0
|
32 |
+
|
33 |
+
for sent_start, sent_end, sent_vector in sent_bounds:
|
34 |
+
sum_sq = 0.0
|
35 |
+
for phrase_id in range(len(unit_vector)):
|
36 |
+
if phrase_id not in sent_vector:
|
37 |
+
sum_sq += unit_vector[phrase_id] ** 2.0
|
38 |
+
|
39 |
+
sent_rank[sent_id] = sqrt(sum_sq)
|
40 |
+
sent_id += 1
|
41 |
+
return sent_rank
|
42 |
+
|
43 |
+
|
44 |
+
def _rank_to_summary(sent_rank, doc, summary_lines):
|
45 |
+
sent_text = {}
|
46 |
+
sent_id = 0
|
47 |
+
|
48 |
+
for sent in doc.sents:
|
49 |
+
sent_text[sent_id] = sent.text
|
50 |
+
sent_id += 1
|
51 |
+
|
52 |
+
summary = []
|
53 |
+
num_sent = 0
|
54 |
+
for sent_id, _ in sent_rank:
|
55 |
+
num_sent += 1
|
56 |
+
summary.append(sent_text[sent_id])
|
57 |
+
if num_sent == summary_lines:
|
58 |
+
break
|
59 |
+
|
60 |
+
return ' '.join(summary)
|
61 |
+
|
62 |
+
|
63 |
+
def summarize(text, summary_lines):
|
64 |
+
doc = nlp(text)
|
65 |
+
phrase_vector, sent_bounds = _phrase_vector(doc)
|
66 |
+
sent_rank = sorted(_sent_rank(phrase_vector, sent_bounds).items(), key=itemgetter(1))
|
67 |
+
return _rank_to_summary(sent_rank, doc, summary_lines)
|
src/transformer_summarization.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import LongformerTokenizer, EncoderDecoderModel
|
2 |
+
|
3 |
+
# Load model and tokenizer
|
4 |
+
model = EncoderDecoderModel.from_pretrained("patrickvonplaten/longformer2roberta-cnn_dailymail-fp16")
|
5 |
+
tokenizer = LongformerTokenizer.from_pretrained("allenai/longformer-base-4096")
|
6 |
+
|
7 |
+
|
8 |
+
def summarize(text):
|
9 |
+
input_ids = tokenizer(text, return_tensors="pt").input_ids
|
10 |
+
output_ids = model.generate(input_ids)
|
11 |
+
# Get the summary from the output tokens
|
12 |
+
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
|