Update app.py
Browse files
app.py
CHANGED
@@ -1,645 +1,220 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
os.system('pip install -q datasets loralib sentencepiece accelerate')
|
4 |
-
# os.system('pip install -q git+https://github.com/zphang/transformers@c3dc391')
|
5 |
-
# os.system('pip install -q git+https://github.com/huggingface/transformers')
|
6 |
-
os.system('pip install -q git+https://github.com/mbehm/transformers')
|
7 |
-
os.system('pip install -q git+https://github.com/huggingface/peft.git')
|
8 |
-
# os.system('pip install gradio')
|
9 |
-
# os.system('pip install torch')
|
10 |
-
# os.system('pip install peft')
|
11 |
-
# os.system('pip install transformers')
|
12 |
-
os.system('pip install tenacity')
|
13 |
-
os.system('pip install scipy')
|
14 |
-
# os.system('pip install sentencepiece')
|
15 |
|
16 |
-
import re
|
17 |
-
import yaml
|
18 |
-
import gc
|
19 |
-
import copy
|
20 |
-
import time
|
21 |
-
from tenacity import RetryError
|
22 |
-
from tenacity import retry, stop_after_attempt, wait_fixed
|
23 |
import gradio as gr
|
24 |
-
# import
|
25 |
-
|
26 |
-
from
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
By default, this demo runs with streaming mode, but you can also run with dynamic batch generation model.
|
66 |
-
Stambecco is built on the same concept as Standford Alpaca project, but using LoRA it lets us train and inference on a smaller GPUs such as RTX4090 for 7B version. Also, we could build very small size of checkpoints on top of base models thanks to [🤗 transformers](https://huggingface.co/docs/transformers/index), [🤗 peft](https://github.com/huggingface/peft), and [bitsandbytes](https://github.com/TimDettmers/bitsandbytes/tree/main) libraries.
|
67 |
-
This demo currently runs 8Bit 7b version of the model.
|
68 |
-
"""
|
69 |
-
|
70 |
-
DEFAULT_EXAMPLES = {
|
71 |
-
"Typical Questions": [
|
72 |
-
{
|
73 |
-
"title": "Parlami di Giulio Cesare.",
|
74 |
-
"examples": [
|
75 |
-
["1", "Scrivi un articolo su Giulio Cesare"],
|
76 |
-
["2", "Davvero?"],
|
77 |
-
["3", "Quanto era ricco Giulio Cesare?"],
|
78 |
-
["4", "Chi è stato il suo successore?"],
|
79 |
-
]
|
80 |
-
},
|
81 |
-
{
|
82 |
-
"title": "Parigi",
|
83 |
-
"examples": [
|
84 |
-
["1", "Scrivi un tema sulla città di Parigi"],
|
85 |
-
["2", "Fai un elenco di 5 posti da visitare assolutamente"],
|
86 |
-
["3", "Quali eventi importanti della Storia sono avvenuti a Parigi?"],
|
87 |
-
["4", "Quale è il periodo migliore per visitare Parigi?"],
|
88 |
-
]
|
89 |
-
},
|
90 |
-
{
|
91 |
-
"title": "Scrivi un programma in Python che stampi i primi 10 numeri di Fibonacci",
|
92 |
-
"examples": [
|
93 |
-
["1", "Scrivi un programma in Python che stampi i primi 10 numeri di Fibonacci"],
|
94 |
-
["2", "Potresti spiegarmi come funziona il codice?"],
|
95 |
-
["3", "Cos'è la ricorsione?"],
|
96 |
-
]
|
97 |
-
}
|
98 |
-
],
|
99 |
-
}
|
100 |
-
|
101 |
-
SPECIAL_STRS = {
|
102 |
-
"continue": "continua",
|
103 |
-
"summarize": "Di cosa abbiamo discusso finora? Descrivi nella user's view."
|
104 |
-
}
|
105 |
-
|
106 |
-
PARENT_BLOCK_CSS = """
|
107 |
-
#col_container {
|
108 |
-
width: 95%;
|
109 |
-
margin-left: auto;
|
110 |
-
margin-right: auto;
|
111 |
-
}
|
112 |
-
#chatbot {
|
113 |
-
height: 500px;
|
114 |
-
overflow: auto;
|
115 |
-
}
|
116 |
-
"""
|
117 |
-
|
118 |
-
def load_model(
|
119 |
-
base="decapoda-research/llama-7b-hf",
|
120 |
-
finetuned="mchl-labs/stambecco-7b-plus",
|
121 |
-
):
|
122 |
-
tokenizer = LLaMATokenizer.from_pretrained(base)
|
123 |
-
tokenizer.pad_token_id = 0
|
124 |
-
tokenizer.padding_side = "left"
|
125 |
-
|
126 |
-
model = LlamaForCausalLM.from_pretrained(
|
127 |
-
base,
|
128 |
-
load_in_8bit=True,
|
129 |
-
device_map="from_pretrained",
|
130 |
-
# load_in_8bit_fp32_cpu_offload=True
|
131 |
-
)
|
132 |
-
# model = PeftModel.from_pretrained(model, finetuned, device_map={'': 0})
|
133 |
-
|
134 |
-
model = PeftModel.from_pretrained(model, finetuned)
|
135 |
-
return model, tokenizer
|
136 |
-
|
137 |
-
def get_generation_config(path):
|
138 |
-
with open(path, 'rb') as f:
|
139 |
-
generation_config = yaml.safe_load(f.read())
|
140 |
-
|
141 |
-
return GenerationConfig(**generation_config["generation_config"])
|
142 |
-
|
143 |
-
def generate_prompt(prompt, histories, ctx=None, partial=False):
|
144 |
-
convs = f"""Di seguito è riportata una cronologia delle istruzioni che descrivono le tasks, abbinate a un input che fornisce ulteriore contesto. Scrivi una risposta che completi adeguatamente la richiesta ricordando la cronologia della conversazione.
|
145 |
-
|
146 |
-
"""
|
147 |
-
|
148 |
-
if ctx is not None:
|
149 |
-
convs = f"""### Input: {ctx}
|
150 |
-
"""
|
151 |
-
|
152 |
-
sub_convs = ""
|
153 |
-
start_idx = 0
|
154 |
-
|
155 |
-
for idx, history in enumerate(histories):
|
156 |
-
history_prompt = history[0]
|
157 |
-
history_response = history[1]
|
158 |
-
if history_response == "✅ Riepilogo della conversazione effettuato e impostato come contesto" or history_prompt == SPECIAL_STRS["summarize"]:
|
159 |
-
start_idx = idx
|
160 |
-
|
161 |
-
# drop the previous conversations if user has summarized
|
162 |
-
for history in histories[start_idx if start_idx == 0 else start_idx+1:]:
|
163 |
-
history_prompt = history[0]
|
164 |
-
history_response = history[1]
|
165 |
-
|
166 |
-
history_response = history_response.replace("<br>", "\n")
|
167 |
-
history_response = re.sub(
|
168 |
-
html_tag_pattern, repl_empty_str, history_response
|
169 |
-
)
|
170 |
-
|
171 |
-
sub_convs = sub_convs + f"""### Istruzione: {history_prompt}
|
172 |
-
### Risposta: {history_response}
|
173 |
-
"""
|
174 |
-
|
175 |
-
sub_convs = sub_convs + f"""### Istruzione: {prompt}
|
176 |
-
### Risposta:"""
|
177 |
-
|
178 |
-
convs = convs + sub_convs
|
179 |
-
return sub_convs if partial else convs, len(sub_convs)
|
180 |
-
|
181 |
-
def common_post_process(original_str):
|
182 |
-
original_str = re.sub(
|
183 |
-
multi_line_pattern, repl_linebreak, original_str
|
184 |
-
)
|
185 |
-
return original_str
|
186 |
-
|
187 |
-
def post_process_stream(bot_response):
|
188 |
-
# sometimes model spits out text containing
|
189 |
-
# "### Risposta:" and "### Istruzione: -> in this case, we want to stop generating
|
190 |
-
if "### Risposta:" in bot_response or "### Input:" in bot_response:
|
191 |
-
bot_response = bot_response.replace("### Risposta:", '').replace("### Input:", '').strip()
|
192 |
-
return bot_response, True
|
193 |
-
|
194 |
-
return common_post_process(bot_response), False
|
195 |
-
|
196 |
-
def post_process_batch(bot_response):
|
197 |
-
bot_response = bot_response.split("### Risposta:")[-1].strip()
|
198 |
-
return common_post_process(bot_response)
|
199 |
-
|
200 |
-
def post_processes_batch(bot_responses):
|
201 |
-
return [post_process_batch(r) for r in bot_responses]
|
202 |
-
|
203 |
-
def get_output_batch(
|
204 |
-
model, tokenizer, prompts, generation_config
|
205 |
-
):
|
206 |
-
if len(prompts) == 1:
|
207 |
-
encoding = tokenizer(prompts, return_tensors="pt")
|
208 |
-
input_ids = encoding["input_ids"].cuda()
|
209 |
-
generated_id = model.generate(
|
210 |
-
input_ids=input_ids,
|
211 |
-
generation_config=generation_config,
|
212 |
-
max_new_tokens=256
|
213 |
-
)
|
214 |
-
|
215 |
-
decoded = tokenizer.batch_decode(generated_id)
|
216 |
-
del input_ids, generated_id
|
217 |
-
torch.cuda.empty_cache()
|
218 |
-
return decoded
|
219 |
else:
|
220 |
-
|
221 |
-
|
222 |
-
**encodings,
|
223 |
-
generation_config=generation_config,
|
224 |
-
max_new_tokens=256
|
225 |
-
)
|
226 |
-
|
227 |
-
decoded = tokenizer.batch_decode(generated_ids)
|
228 |
-
del encodings, generated_ids
|
229 |
-
torch.cuda.empty_cache()
|
230 |
-
return decoded
|
231 |
-
|
232 |
-
|
233 |
-
# StreamModel is borrowed from basaran project
|
234 |
-
# please find more info about it -> https://github.com/hyperonym/basaran
|
235 |
-
class StreamModel:
|
236 |
-
"""StreamModel wraps around a language model to provide stream decoding."""
|
237 |
-
|
238 |
-
def __init__(self, model, tokenizer):
|
239 |
-
super().__init__()
|
240 |
-
self.model = model
|
241 |
-
self.tokenizer = tokenizer
|
242 |
-
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
243 |
-
|
244 |
-
self.processor = LogitsProcessorList()
|
245 |
-
self.processor.append(TemperatureLogitsWarper(0.9))
|
246 |
-
self.processor.append(TopPLogitsWarper(0.75))
|
247 |
-
|
248 |
-
|
249 |
-
def __call__(
|
250 |
-
self,
|
251 |
-
prompt,
|
252 |
-
min_tokens=0,
|
253 |
-
max_tokens=16,
|
254 |
-
temperature=1.0,
|
255 |
-
top_p=1.0,
|
256 |
-
n=1,
|
257 |
-
logprobs=0,
|
258 |
-
):
|
259 |
-
"""Create a completion stream for the provided prompt."""
|
260 |
-
input_ids = self.tokenize(prompt)
|
261 |
-
logprobs = max(logprobs, 0)
|
262 |
-
|
263 |
-
# bigger than 1
|
264 |
-
chunk_size = 2
|
265 |
-
chunk_count = 0
|
266 |
-
|
267 |
-
# Generate completion tokens.
|
268 |
-
final_tokens = torch.empty(0)
|
269 |
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
):
|
278 |
-
if
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
yield
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
return batch[0].to(self.device)
|
302 |
-
|
303 |
-
def generate(self, input_ids, logprobs=0, **kwargs):
|
304 |
-
"""Generate a stream of predicted tokens using the language model."""
|
305 |
-
|
306 |
-
# Store the original batch size and input length.
|
307 |
-
batch_size = input_ids.shape[0]
|
308 |
-
input_length = input_ids.shape[-1]
|
309 |
-
|
310 |
-
# Separate model arguments from generation config.
|
311 |
-
config = self.model.generation_config
|
312 |
-
config = copy.deepcopy(config)
|
313 |
-
kwargs = config.update(**kwargs)
|
314 |
-
kwargs["output_attentions"] = False
|
315 |
-
kwargs["output_hidden_states"] = False
|
316 |
-
kwargs["use_cache"] = True
|
317 |
-
|
318 |
-
# Collect special token IDs.
|
319 |
-
pad_token_id = config.pad_token_id
|
320 |
-
bos_token_id = config.bos_token_id
|
321 |
-
eos_token_id = config.eos_token_id
|
322 |
-
if isinstance(eos_token_id, int):
|
323 |
-
eos_token_id = [eos_token_id]
|
324 |
-
if pad_token_id is None and eos_token_id is not None:
|
325 |
-
pad_token_id = eos_token_id[0]
|
326 |
-
|
327 |
-
# Generate from eos if no input is specified.
|
328 |
-
if input_length == 0:
|
329 |
-
input_ids = input_ids.new_ones((batch_size, 1)).long()
|
330 |
-
if eos_token_id is not None:
|
331 |
-
input_ids = input_ids * eos_token_id[0]
|
332 |
-
input_length = 1
|
333 |
-
|
334 |
-
# Keep track of which sequences are already finished.
|
335 |
-
unfinished = input_ids.new_ones(batch_size)
|
336 |
-
|
337 |
-
# Start auto-regressive generation.
|
338 |
-
while True:
|
339 |
-
inputs = self.model.prepare_inputs_for_generation(
|
340 |
-
input_ids, **kwargs
|
341 |
-
) # noqa: E501
|
342 |
-
|
343 |
-
outputs = self._infer(
|
344 |
-
self.model,
|
345 |
-
**inputs,
|
346 |
-
# return_dict=True,
|
347 |
-
output_attentions=False,
|
348 |
-
output_hidden_states=False,
|
349 |
-
)
|
350 |
-
|
351 |
-
# Pre-process the probability distribution of the next tokens.
|
352 |
-
logits = outputs.logits[:, -1, :]
|
353 |
-
with torch.inference_mode():
|
354 |
-
logits = self.processor(input_ids, logits)
|
355 |
-
probs = torch.nn.functional.softmax(logits, dim=-1)
|
356 |
-
|
357 |
-
# Select deterministic or stochastic decoding strategy.
|
358 |
-
if (config.top_p is not None and config.top_p <= 0) or (
|
359 |
-
config.temperature is not None and config.temperature <= 0
|
360 |
-
):
|
361 |
-
tokens = torch.argmax(probs, dim=-1)[:, None]
|
362 |
-
else:
|
363 |
-
tokens = torch.multinomial(probs, num_samples=1)
|
364 |
-
|
365 |
-
tokens = tokens.squeeze(1)
|
366 |
-
|
367 |
-
# Finished sequences should have their next token be a padding.
|
368 |
-
if pad_token_id is not None:
|
369 |
-
tokens = tokens * unfinished + pad_token_id * (1 - unfinished)
|
370 |
-
|
371 |
-
# Append selected tokens to the inputs.
|
372 |
-
input_ids = torch.cat([input_ids, tokens[:, None]], dim=-1)
|
373 |
-
|
374 |
-
# Mark sequences with eos tokens as finished.
|
375 |
-
if eos_token_id is not None:
|
376 |
-
not_eos = sum(tokens != i for i in eos_token_id)
|
377 |
-
unfinished = unfinished.mul(not_eos.long())
|
378 |
-
|
379 |
-
# Set status to -1 if exceeded the max length.
|
380 |
-
status = unfinished.clone()
|
381 |
-
if input_ids.shape[-1] - input_length >= config.max_new_tokens:
|
382 |
-
status = 0 - status
|
383 |
-
|
384 |
-
# Yield predictions and status.
|
385 |
-
yield tokens
|
386 |
-
|
387 |
-
# Stop when finished or exceeded the max length.
|
388 |
-
if status.max() <= 0:
|
389 |
-
break
|
390 |
-
|
391 |
-
generation_config = get_generation_config(
|
392 |
-
"./generation_config_default.yaml"
|
393 |
-
)
|
394 |
-
|
395 |
-
model, tokenizer = load_model(
|
396 |
-
# base="decapoda-research/llama-13b-hf",
|
397 |
-
# finetuned="mchl-labs/stambecco-13b-plus",
|
398 |
-
)
|
399 |
|
400 |
-
stream_model = StreamModel(model, tokenizer)
|
401 |
|
402 |
-
def
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
):
|
407 |
-
if len(context) > 1000 or len(instruction) > 300:
|
408 |
-
raise gr.Error("Context or prompt is too long!")
|
409 |
-
|
410 |
-
bot_summarized_response = ''
|
411 |
-
# user input should be appropriately formatted (don't be confused by the function name)
|
412 |
-
instruction_display = instruction
|
413 |
-
instruction_prompt, conv_length = generate_prompt(instruction, state_chatbot, context)
|
414 |
|
415 |
-
if conv_length > num_of_characters_to_keep:
|
416 |
-
instruction_prompt = generate_prompt(SPECIAL_STRS["summarize"], state_chatbot, context, partial=True)[0]
|
417 |
-
|
418 |
-
state_chatbot = state_chatbot + [
|
419 |
-
(
|
420 |
-
None,
|
421 |
-
"![](https://s2.gifyu.com/images/icons8-loading-circle.gif) Conversazione troppo lunga, sto riassumendo..."
|
422 |
-
)
|
423 |
-
]
|
424 |
-
yield (state_chatbot, state_chatbot, context)
|
425 |
-
|
426 |
-
bot_summarized_response = get_output_batch(
|
427 |
-
model, tokenizer, [instruction_prompt], generation_config
|
428 |
-
)[0]
|
429 |
-
bot_summarized_response = bot_summarized_response.split("### Risposta:")[-1].strip()
|
430 |
-
|
431 |
-
state_chatbot[-1] = (
|
432 |
-
None,
|
433 |
-
"✅ Riepilogo della conversazione effettuato e impostato come contesto"
|
434 |
-
)
|
435 |
-
print(f"bot_summarized_response: {bot_summarized_response}")
|
436 |
-
yield (state_chatbot, state_chatbot, f"{context}. {bot_summarized_response}".strip())
|
437 |
-
|
438 |
-
instruction_prompt = generate_prompt(instruction, state_chatbot, f"{context} {bot_summarized_response}")[0]
|
439 |
-
|
440 |
-
bot_response = stream_model(
|
441 |
-
instruction_prompt,
|
442 |
-
max_tokens=256,
|
443 |
-
temperature=1,
|
444 |
-
top_p=0.9
|
445 |
-
)
|
446 |
|
447 |
-
|
448 |
-
|
449 |
-
|
|
|
450 |
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
for tokens in bot_response:
|
455 |
-
tokens = tokens.strip()
|
456 |
-
cur_token = tokens[prev_index:]
|
457 |
-
|
458 |
-
if "#" in cur_token and agg_tokens == "":
|
459 |
-
cutoff_idx = tokens.find("#")
|
460 |
-
agg_tokens = tokens[cutoff_idx:]
|
461 |
-
|
462 |
-
if agg_tokens != "":
|
463 |
-
if len(agg_tokens) < len("### Istruzione:") :
|
464 |
-
agg_tokens = agg_tokens + cur_token
|
465 |
-
elif len(agg_tokens) >= len("### Istruzione:"):
|
466 |
-
if tokens.find("### Istruzione:") > -1:
|
467 |
-
processed_response, _ = post_process_stream(tokens[:tokens.find("### Istruzione:")].strip())
|
468 |
-
|
469 |
-
state_chatbot[-1] = (
|
470 |
-
instruction_display,
|
471 |
-
processed_response
|
472 |
-
)
|
473 |
-
yield (state_chatbot, state_chatbot, f"{context} {bot_summarized_response}".strip())
|
474 |
-
break
|
475 |
-
else:
|
476 |
-
agg_tokens = ""
|
477 |
-
cutoff_idx = 0
|
478 |
-
|
479 |
-
if agg_tokens == "":
|
480 |
-
processed_response, to_exit = post_process_stream(tokens)
|
481 |
-
state_chatbot[-1] = (instruction_display, processed_response)
|
482 |
-
yield (state_chatbot, state_chatbot, f"{context} {bot_summarized_response}".strip())
|
483 |
|
484 |
-
|
485 |
-
|
486 |
|
487 |
-
|
488 |
-
|
489 |
-
yield (
|
490 |
-
state_chatbot,
|
491 |
-
state_chatbot,
|
492 |
-
f"{context} {bot_summarized_response}".strip()
|
493 |
-
)
|
494 |
-
|
495 |
-
|
496 |
-
def chat_batch(
|
497 |
-
contexts,
|
498 |
-
instructions,
|
499 |
-
state_chatbots,
|
500 |
-
):
|
501 |
-
state_results = []
|
502 |
-
ctx_results = []
|
503 |
-
|
504 |
-
instruct_prompts = [
|
505 |
-
generate_prompt(instruct, histories, ctx)
|
506 |
-
for ctx, instruct, histories in zip(contexts, instructions, state_chatbots)
|
507 |
-
]
|
508 |
-
|
509 |
-
bot_responses = get_output_batch(
|
510 |
-
model, tokenizer, instruct_prompts, generation_config
|
511 |
-
)
|
512 |
-
bot_responses = post_processes_batch(bot_responses)
|
513 |
-
|
514 |
-
for ctx, instruction, bot_response, state_chatbot in zip(contexts, instructions, bot_responses, state_chatbots):
|
515 |
-
new_state_chatbot = state_chatbot + [('' if instruction == SPECIAL_STRS["continue"] else instruction, bot_response)]
|
516 |
-
ctx_results.append(gr.Textbox.update(value=bot_response) if instruction == SPECIAL_STRS["summarize"] else ctx)
|
517 |
-
state_results.append(new_state_chatbot)
|
518 |
-
|
519 |
-
return (state_results, state_results, ctx_results)
|
520 |
-
|
521 |
-
def reset_textbox():
|
522 |
-
return gr.Textbox.update(value='')
|
523 |
-
|
524 |
-
def reset_everything(
|
525 |
-
context_txtbox,
|
526 |
-
instruction_txtbox,
|
527 |
-
state_chatbot):
|
528 |
-
|
529 |
-
state_chatbot = []
|
530 |
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
|
560 |
-
|
561 |
-
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
examples=item["examples"],
|
570 |
-
inputs=[
|
571 |
-
hidden_txtbox, context_txtbox, instruction_txtbox
|
572 |
-
],
|
573 |
-
label=None
|
574 |
)
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
],
|
583 |
-
label=None
|
584 |
)
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
599 |
|
600 |
-
|
601 |
-
|
602 |
-
[
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
-
|
608 |
-
|
|
|
|
|
|
|
|
|
609 |
)
|
610 |
-
|
611 |
-
|
612 |
-
|
613 |
-
[
|
614 |
-
[
|
615 |
)
|
616 |
-
|
617 |
-
|
618 |
-
|
619 |
-
[
|
620 |
)
|
621 |
-
|
622 |
-
|
623 |
-
|
624 |
-
|
625 |
-
|
626 |
-
|
|
|
|
|
|
|
|
|
627 |
)
|
|
|
628 |
|
629 |
-
|
630 |
-
|
631 |
-
|
632 |
-
[state_chatbot, chatbot, context_txtbox, instruction_txtbox],
|
633 |
-
cancels=[
|
634 |
-
send_event, continue_event, summarize_event
|
635 |
-
]
|
636 |
-
)
|
637 |
-
|
638 |
-
demo.queue(
|
639 |
-
concurrency_count=1,
|
640 |
-
max_size=100,
|
641 |
-
).launch(
|
642 |
-
max_threads=5,
|
643 |
-
server_name="0.0.0.0",
|
644 |
-
share=True
|
645 |
-
)
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# -*- coding: utf-8 -*-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import gradio as gr
|
5 |
+
#from transformers import pipeline
|
6 |
+
import torch
|
7 |
+
from utils import *
|
8 |
+
from presets import *
|
9 |
+
|
10 |
+
#antwort=""
|
11 |
+
######################################################################
|
12 |
+
#Modelle und Tokenizer
|
13 |
+
|
14 |
+
#Hugging Chat nutzen
|
15 |
+
# Create a chatbot connection
|
16 |
+
#chatbot = hugchat.ChatBot(cookie_path="cookies.json")
|
17 |
+
|
18 |
+
#Alternativ mit beliebigen Modellen:
|
19 |
+
#base_model = "project-baize/baize-v2-7b"
|
20 |
+
base_model = "EleutherAI/gpt-neo-1.3B"
|
21 |
+
tokenizer,model,device = load_tokenizer_and_model(base_model)
|
22 |
+
|
23 |
+
|
24 |
+
########################################################################
|
25 |
+
#Chat KI nutzen, um Text zu generieren...
|
26 |
+
def predict(text,
|
27 |
+
chatbotGr,
|
28 |
+
history,
|
29 |
+
top_p,
|
30 |
+
temperature,
|
31 |
+
max_length_tokens,
|
32 |
+
max_context_length_tokens,):
|
33 |
+
if text=="":
|
34 |
+
yield chatbotGr,history,"Empty context."
|
35 |
+
return
|
36 |
+
try:
|
37 |
+
model
|
38 |
+
except:
|
39 |
+
yield [[text,"No Model Found"]],[],"No Model Found"
|
40 |
+
return
|
41 |
+
|
42 |
+
inputs = generate_prompt_with_history(text,history,tokenizer,max_length=max_context_length_tokens)
|
43 |
+
if inputs is None:
|
44 |
+
yield chatbotGr,history,"Input too long."
|
45 |
+
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
else:
|
47 |
+
prompt,inputs=inputs
|
48 |
+
begin_length = len(prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
input_ids = inputs["input_ids"][:,-max_context_length_tokens:].to(device)
|
51 |
+
torch.cuda.empty_cache()
|
52 |
+
|
53 |
+
#torch.no_grad() bedeutet, dass für die betreffenden tensoren keine Ableitungen berechnet werden bei der backpropagation
|
54 |
+
#hier soll das NN ja auch nicht geändert werden 8backprop ist nicht nötig), da es um interference-prompts geht!
|
55 |
+
with torch.no_grad():
|
56 |
+
#die vergangenen prompts werden alle als Tupel in history abgelegt sortiert nach 'Human' und 'AI'- dass sind daher auch die stop-words, die den jeweils nächsten Eintrag kennzeichnen
|
57 |
+
for x in greedy_search(input_ids,model,tokenizer,stop_words=["[|Human|]", "[|AI|]"],max_length=max_length_tokens,temperature=temperature,top_p=top_p):
|
58 |
+
if is_stop_word_or_prefix(x,["[|Human|]", "[|AI|]"]) is False:
|
59 |
+
if "[|Human|]" in x:
|
60 |
+
x = x[:x.index("[|Human|]")].strip()
|
61 |
+
if "[|AI|]" in x:
|
62 |
+
x = x[:x.index("[|AI|]")].strip()
|
63 |
+
x = x.strip()
|
64 |
+
a, b= [[y[0],convert_to_markdown(y[1])] for y in history]+[[text, convert_to_markdown(x)]],history + [[text,x]]
|
65 |
+
yield a, b, "Generating..."
|
66 |
+
if shared_state.interrupted:
|
67 |
+
shared_state.recover()
|
68 |
+
try:
|
69 |
+
yield a, b, "Stop: Success"
|
70 |
+
return
|
71 |
+
except:
|
72 |
+
pass
|
73 |
+
del input_ids
|
74 |
+
gc.collect()
|
75 |
+
torch.cuda.empty_cache()
|
76 |
+
|
77 |
+
try:
|
78 |
+
yield a,b,"Generate: Success"
|
79 |
+
except:
|
80 |
+
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
|
|
82 |
|
83 |
+
def reset_chat():
|
84 |
+
#id_new = chatbot.new_conversation()
|
85 |
+
#chatbot.change_conversation(id_new)
|
86 |
+
reset_textbox()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
+
##########################################################
|
90 |
+
#Übersetzungs Ki nutzen
|
91 |
+
def translate():
|
92 |
+
return "Kommt noch!"
|
93 |
|
94 |
+
#Programmcode KI
|
95 |
+
def coding():
|
96 |
+
return "Kommt noch!"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
+
#######################################################################
|
99 |
+
#Darstellung mit Gradio
|
100 |
|
101 |
+
with open("custom.css", "r", encoding="utf-8") as f:
|
102 |
+
customCSS = f.read()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
+
with gr.Blocks(theme=small_and_beautiful_theme) as demo:
|
105 |
+
history = gr.State([])
|
106 |
+
user_question = gr.State("")
|
107 |
+
gr.Markdown("KIs am LI - wähle aus, was du bzgl. KI-Bots ausprobieren möchtest!")
|
108 |
+
with gr.Tabs():
|
109 |
+
with gr.TabItem("LI-Chat"):
|
110 |
+
with gr.Row():
|
111 |
+
gr.HTML(title)
|
112 |
+
status_display = gr.Markdown("Erfolg", elem_id="status_display")
|
113 |
+
gr.Markdown(description_top)
|
114 |
+
with gr.Row(scale=1).style(equal_height=True):
|
115 |
+
with gr.Column(scale=5):
|
116 |
+
with gr.Row(scale=1):
|
117 |
+
chatbotGr = gr.Chatbot(elem_id="LI_chatbot").style(height="100%")
|
118 |
+
with gr.Row(scale=1):
|
119 |
+
with gr.Column(scale=12):
|
120 |
+
user_input = gr.Textbox(
|
121 |
+
show_label=False, placeholder="Gib deinen Text / Frage ein."
|
122 |
+
).style(container=False)
|
123 |
+
with gr.Column(min_width=100, scale=1):
|
124 |
+
submitBtn = gr.Button("Absenden")
|
125 |
+
with gr.Column(min_width=100, scale=1):
|
126 |
+
cancelBtn = gr.Button("Stoppen")
|
127 |
+
with gr.Row(scale=1):
|
128 |
+
emptyBtn = gr.Button(
|
129 |
+
"🧹 Neuer Chat",
|
130 |
+
)
|
131 |
+
with gr.Column():
|
132 |
+
with gr.Column(min_width=50, scale=1):
|
133 |
+
with gr.Tab(label="Parameter zum Model"):
|
134 |
+
gr.Markdown("# Parameters")
|
135 |
+
top_p = gr.Slider(
|
136 |
+
minimum=-0,
|
137 |
+
maximum=1.0,
|
138 |
+
value=0.95,
|
139 |
+
step=0.05,
|
140 |
+
interactive=True,
|
141 |
+
label="Top-p",
|
|
|
|
|
|
|
|
|
|
|
142 |
)
|
143 |
+
temperature = gr.Slider(
|
144 |
+
minimum=0.1,
|
145 |
+
maximum=2.0,
|
146 |
+
value=1,
|
147 |
+
step=0.1,
|
148 |
+
interactive=True,
|
149 |
+
label="Temperature",
|
|
|
|
|
150 |
)
|
151 |
+
max_length_tokens = gr.Slider(
|
152 |
+
minimum=0,
|
153 |
+
maximum=512,
|
154 |
+
value=512,
|
155 |
+
step=8,
|
156 |
+
interactive=True,
|
157 |
+
label="Max Generation Tokens",
|
158 |
+
)
|
159 |
+
max_context_length_tokens = gr.Slider(
|
160 |
+
minimum=0,
|
161 |
+
maximum=4096,
|
162 |
+
value=2048,
|
163 |
+
step=128,
|
164 |
+
interactive=True,
|
165 |
+
label="Max History Tokens",
|
166 |
+
)
|
167 |
+
gr.Markdown(description)
|
168 |
+
|
169 |
+
with gr.TabItem("Übersetzungen"):
|
170 |
+
with gr.Row():
|
171 |
+
gr.Textbox(
|
172 |
+
show_label=False, placeholder="Ist noch in Arbeit..."
|
173 |
+
).style(container=False)
|
174 |
+
with gr.TabItem("Code-Generierungen"):
|
175 |
+
with gr.Row():
|
176 |
+
gr.Textbox(
|
177 |
+
show_label=False, placeholder="Ist noch in Arbeit..."
|
178 |
+
).style(container=False)
|
179 |
|
180 |
+
predict_args = dict(
|
181 |
+
fn=predict,
|
182 |
+
inputs=[
|
183 |
+
user_question,
|
184 |
+
chatbotGr,
|
185 |
+
history,
|
186 |
+
top_p,
|
187 |
+
temperature,
|
188 |
+
max_length_tokens,
|
189 |
+
max_context_length_tokens,
|
190 |
+
],
|
191 |
+
outputs=[chatbotGr, history, status_display],
|
192 |
+
show_progress=True,
|
193 |
)
|
194 |
+
|
195 |
+
#neuer Chat
|
196 |
+
reset_args = dict(
|
197 |
+
#fn=reset_chat, inputs=[], outputs=[user_input, status_display]
|
198 |
+
fn=reset_textbox, inputs=[], outputs=[user_input, status_display]
|
199 |
)
|
200 |
+
|
201 |
+
# Chatbot
|
202 |
+
transfer_input_args = dict(
|
203 |
+
fn=transfer_input, inputs=[user_input], outputs=[user_question, user_input, submitBtn], show_progress=True
|
204 |
)
|
205 |
+
|
206 |
+
#Listener auf Start-Click auf Button oder Return
|
207 |
+
predict_event1 = user_input.submit(**transfer_input_args).then(**predict_args)
|
208 |
+
predict_event2 = submitBtn.click(**transfer_input_args).then(**predict_args)
|
209 |
+
|
210 |
+
#Listener, Wenn reset...
|
211 |
+
emptyBtn.click(
|
212 |
+
reset_state,
|
213 |
+
outputs=[chatbotGr, history, status_display],
|
214 |
+
show_progress=True,
|
215 |
)
|
216 |
+
emptyBtn.click(**reset_args)
|
217 |
|
218 |
+
demo.title = "LI Chat"
|
219 |
+
#demo.queue(concurrency_count=1).launch(share=True)
|
220 |
+
demo.queue(concurrency_count=1).launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|