hugolb's picture
Add files 3
36469a6
raw
history blame
2.01 kB
import gradio as gr
import torch
import torch.nn as nn
from torchvision import models, transforms
from PIL import Image
import requests
# Load the pre-trained MobileNetV2 model from torchvision
model = models.mobilenet_v2(pretrained=True)
device = torch.device("cpu")
model.to(device)
model.eval() # Set model to evaluation mode
# Modify the class labels
url = "https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt"
response = requests.get(url)
class_labels = response.text.splitlines()
class_labels[282] = "FLAG{3883}" # Modify class name to "FLAG{3883}"
# Preprocessing function to prepare the image
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
# Function to preprocess the input image
def preprocess_image(image):
image = preprocess(image).unsqueeze(0) # Add batch dimension
return image.to(device) # Move image to the same device as the model
# Prediction function
def predict(image):
# Load the input file
reloaded_img_tensor = torch.load(image, map_location=device).to(device) # Ensure tensor is loaded on the correct device
# Make predictions
output = model(reloaded_img_tensor)
predicted_label = class_labels[output.argmax(1, keepdim=True).item()]
return predicted_label
# Gradio interface
iface = gr.Interface(
fn=predict, # Function to call for prediction
inputs=gr.File(label="Upload a .pt file"), # Input: .pt file upload
outputs=gr.Textbox(label="Predicted Class"), # Output: Text showing predicted class
title="Vault Challenge 3 - CW", # Title of the interface
description="Upload an image, and the model will predict the class. Try to fool the model into predicting the FLAG using C&W! Note: you should save the adverserial image as a .pt file and upload it to the model to get the FLAG."
)
# Launch the Gradio interface
iface.launch()