Spaces:
Sleeping
Sleeping
File size: 1,469 Bytes
fec08c2 ae5f779 fec08c2 ae5f779 fec08c2 ae5f779 fec08c2 ae5f779 fec08c2 60b3725 ae5f779 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import streamlit as st
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
# Load pipelines
pipe1 = pipeline("translation", model="DunnBC22/opus-mt-zh-en-Chinese_to_English")
pipe3 = pipeline("text-classification", model="lxyuan/distilbert-base-multilingual-cased-sentiments-student")
# Load model and tokenizer for pipe2
tokenizer = AutoTokenizer.from_pretrained("huimanho/CustomModel_Amazon")
model = AutoModelForSequenceClassification.from_pretrained("huimanho/CustomModel_Amazon")
# Streamlit app
st.title("Chinese Review Analysis - Translation, Rating & Sentiment")
# Input text
chinese_text = st.text_area("Enter Chinese Review:", height=150)
if st.button("Analyze"):
# Translation
english_text = pipe1(chinese_text)[0]['translation_text']
# Display translation
st.subheader("Translated Text")
st.write(english_text)
# Rating Prediction
inputs = tokenizer(english_text, return_tensors="pt")
outputs = model(**inputs)
prediction = outputs.logits.argmax(-1).item()
# Display estimated rating
st.subheader("Estimated Amazon Rating")
st.write(f"**Rating:** {prediction + 1} out of 5")
# Sentiment Classification
sentiment = pipe3(chinese_text)[0]['label']
# Display sentiment
st.subheader("Sentiment Analysis")
st.write(f"**Sentiment:** {sentiment}")
# Additional styling
st.markdown("---") # Add a horizontal line for separation |