Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,33 +1,24 @@
|
|
1 |
import streamlit as st
|
2 |
-
import sounddevice as sd
|
3 |
import numpy as np
|
4 |
import torch
|
5 |
from transformers import pipeline
|
|
|
6 |
|
7 |
# Load the pipelines
|
8 |
asr_pipe = pipeline("automatic-speech-recognition", model="alvanlii/whisper-small-cantonese")
|
9 |
translation_pipe = pipeline("translation", model="raptorkwok/cantonese-chinese-translation")
|
10 |
tts_pipe = pipeline("text-to-speech", model="myshell-ai/MeloTTS-Chinese")
|
11 |
|
12 |
-
# Function to record audio
|
13 |
-
def record_audio(duration=5, fs=16000):
|
14 |
-
st.write("Recording...")
|
15 |
-
audio = sd.rec(int(duration * fs), samplerate=fs, channels=1, dtype='float32')
|
16 |
-
sd.wait()
|
17 |
-
st.write("Recording complete.")
|
18 |
-
return audio.flatten()
|
19 |
-
|
20 |
-
# Function to play audio
|
21 |
-
def play_audio(audio, fs=16000):
|
22 |
-
sd.play(audio, fs)
|
23 |
-
sd.wait()
|
24 |
-
|
25 |
# Streamlit UI
|
26 |
st.title("Cantonese to Chinese Translator")
|
27 |
-
st.write("
|
28 |
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
31 |
|
32 |
# Recognize Cantonese speech
|
33 |
audio_input = torch.tensor(audio)
|
@@ -43,8 +34,4 @@ if st.button("Record"):
|
|
43 |
tts_output = tts_pipe(chinese_text)
|
44 |
|
45 |
# Play back the Chinese output
|
46 |
-
st.
|
47 |
-
play_audio(tts_output['audio'])
|
48 |
-
|
49 |
-
# Run the app using the command:
|
50 |
-
# streamlit run app.py
|
|
|
1 |
import streamlit as st
|
|
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
from transformers import pipeline
|
5 |
+
import librosa
|
6 |
|
7 |
# Load the pipelines
|
8 |
asr_pipe = pipeline("automatic-speech-recognition", model="alvanlii/whisper-small-cantonese")
|
9 |
translation_pipe = pipeline("translation", model="raptorkwok/cantonese-chinese-translation")
|
10 |
tts_pipe = pipeline("text-to-speech", model="myshell-ai/MeloTTS-Chinese")
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
# Streamlit UI
|
13 |
st.title("Cantonese to Chinese Translator")
|
14 |
+
st.write("Upload your Cantonese audio file (WAV format) below.")
|
15 |
|
16 |
+
# File upload
|
17 |
+
uploaded_file = st.file_uploader("Choose a WAV file", type="wav")
|
18 |
+
|
19 |
+
if uploaded_file is not None:
|
20 |
+
# Load the audio file
|
21 |
+
audio, sr = librosa.load(uploaded_file, sr=16000)
|
22 |
|
23 |
# Recognize Cantonese speech
|
24 |
audio_input = torch.tensor(audio)
|
|
|
34 |
tts_output = tts_pipe(chinese_text)
|
35 |
|
36 |
# Play back the Chinese output
|
37 |
+
st.audio(tts_output['audio'], format='audio/wav')
|
|
|
|
|
|
|
|