MultiDocsSummarization / chdg_inference.py
hungdungn47's picture
fix chdg infer
31521f5
import torch
import torch.nn as nn
import torch.nn.functional as F
import pickle
import json
import numpy as np
import pandas as pd
from rouge import Rouge
import string
import copy
import re
from transformers import AutoModel, AutoTokenizer
from underthesea import sent_tokenize, word_tokenize
from sklearn.metrics.pairwise import cosine_similarity
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
phobert = AutoModel.from_pretrained("vinai/phobert-base-v2").to(device)
tokenizer = AutoTokenizer.from_pretrained("vinai/phobert-base-v2")
def getRouge2(ref, pred, kind): # tokenized input
try:
return round(Rouge().get_scores(pred.lower(), ref.lower())[0]['rouge-2'][kind], 4)
except ValueError:
return 0.0
class MLP(nn.Module):
def __init__(self, dims: list, layers=2, act=nn.LeakyReLU(), dropout_p=0.3, keep_last_layer=False):
super(MLP, self).__init__()
assert len(dims) == layers + 1
self.layers = layers
self.act = act
self.dropout = nn.Dropout(dropout_p)
self.keep_last = keep_last_layer
self.mlp_layers = nn.ModuleList([])
for i in range(self.layers):
self.mlp_layers.append(nn.Linear(dims[i], dims[i + 1]))
def forward(self, x):
for i in range(len(self.mlp_layers) - 1):
x = self.dropout(self.act(self.mlp_layers[i](x)))
if self.keep_last:
x = self.mlp_layers[-1](x)
else:
x = self.act(self.mlp_layers[-1](x))
return x
class GraphAttentionLayer(nn.Module):
def __init__(self, in_features: int, out_features: int, n_heads: int,
is_concat: bool = True,
dropout: float = 0.6,
leaky_relu_negative_slope: float = 0.2):
super().__init__()
self.is_concat = is_concat
self.n_heads = n_heads
# Calculate the number of dimensions per head
if is_concat:
assert out_features % n_heads == 0
self.n_hidden = out_features // n_heads
else:
self.n_hidden = out_features
self.linear = nn.Linear(in_features, self.n_hidden * n_heads, bias=False)
self.attn = nn.Linear(self.n_hidden * 2, 1, bias=False)
self.activation = nn.LeakyReLU(negative_slope=leaky_relu_negative_slope)
self.softmax = nn.Softmax(dim=1)
self.dropout = nn.Dropout(dropout)
def forward(self, h: torch.Tensor, adj_mat: torch.Tensor, docnum, secnum):
n_nodes = h.shape[0]
g = self.linear(h).view(n_nodes, self.n_heads, self.n_hidden)
g_repeat = g.repeat(n_nodes, 1, 1)
g_repeat_interleave = g.repeat_interleave(n_nodes, dim=0)
g_concat = torch.cat([g_repeat_interleave, g_repeat], dim=-1)
g_concat = g_concat.view(n_nodes, n_nodes, self.n_heads, 2 * self.n_hidden)
e = self.activation(self.attn(g_concat))
e = e.squeeze(-1)
# The adjacency matrix should have shape
# `[n_nodes, n_nodes, n_heads]` or`[n_nodes, n_nodes, 1]`
assert adj_mat.shape[0] == 1 or adj_mat.shape[0] == n_nodes
assert adj_mat.shape[1] == 1 or adj_mat.shape[1] == n_nodes
assert adj_mat.shape[2] == 1 or adj_mat.shape[2] == self.n_heads
# Mask $e_{ij}$ based on adjacency matrix.
# $e_{ij}$ is set to $- \infty$ if there is no edge from $i$ to $j$.
e = e.masked_fill(adj_mat == 0, float(-1e9))
a = self.softmax(e)
a = self.dropout(a)
attn_res = torch.einsum('ijh,jhf->ihf', a, g)
# Concatenate the heads
if self.is_concat:
return attn_res.reshape(n_nodes, self.n_heads * self.n_hidden)
# Take the mean of the heads
else:
return attn_res.mean(dim=1)
class GAT(nn.Module):
def __init__(self, in_features: int, n_hidden: int, n_classes: int, n_heads: int, dropout: float):
super().__init__()
self.layer1 = GraphAttentionLayer(in_features, n_hidden, n_heads, is_concat=True, dropout=dropout)
self.activation = nn.ELU()
self.output = GraphAttentionLayer(n_hidden, n_classes, 1, is_concat=False, dropout=dropout)
self.dropout = nn.Dropout(dropout)
def forward(self, x: torch.Tensor, adj_mat: torch.Tensor, docnum, secnum):
x = x.squeeze(0)
adj_mat = adj_mat.squeeze(0)
adj_x = adj_mat.clone().sum(dim=1, keepdim=True).repeat(1, x.shape[1]).bool()
adj_mat = adj_mat.unsqueeze(-1).bool()
x = self.dropout(x)
x = self.layer1(x, adj_mat, docnum, secnum)
x = self.activation(x)
x = self.dropout(x)
x = self.output(x, adj_mat, docnum, secnum).masked_fill(adj_x == 0, float(0))
return x.unsqueeze(0)
class StepWiseGraphConvLayer(nn.Module):
def __init__(self, in_dim, hid_dim, dropout_p=0.3, act=nn.LeakyReLU(), nheads=6, iter=1, final="att"):
super().__init__()
self.act = act
self.dropout = nn.Dropout(dropout_p)
self.iter = iter
self.in_dim = in_dim
self.gat = nn.ModuleList([GAT(in_features=in_dim, n_hidden=hid_dim, n_classes=in_dim,
dropout=dropout_p, n_heads=nheads) for _ in range(iter)])
self.gat2 = nn.ModuleList([GAT(in_features=in_dim, n_hidden=hid_dim, n_classes=in_dim,
dropout=dropout_p, n_heads=nheads) for _ in range(iter)])
self.gat3 = nn.ModuleList([GAT(in_features=in_dim, n_hidden=hid_dim, n_classes=in_dim,
dropout=dropout_p, n_heads=nheads) for _ in range(iter)])
self.out_ffn = MLP([in_dim * 3, hid_dim, hid_dim, in_dim], layers=3, dropout_p=dropout_p)
def forward(self, feature, adj, docnum, secnum):
sen_adj = adj.clone()
sen_adj[:, -docnum-secnum-1:, :] = sen_adj[:, :, -docnum-secnum-1:] = 0
sec_adj = adj.clone()
sec_adj[:, :-docnum-secnum-1, :] = sec_adj[:, -docnum-1:, :] = sec_adj[:, :, -docnum-1:] = 0
doc_adj = adj.clone()
doc_adj[:, :-docnum-1, :] = 0
feature_sen = feature.clone()
feature_resi = feature
feature_sen_re = feature_sen.clone()
for i in range(0, self.iter):
feature_sen = self.gat[i](feature_sen, sen_adj, docnum, secnum)
feature_sen = F.layer_norm(feature_sen + feature_sen_re, [self.in_dim])
feature_sec = feature_sen.clone()
feature_sec_re = feature_sec.clone()
for i in range(0, self.iter):
feature_sec = self.gat2[i](feature_sec, sec_adj, docnum, secnum)
feature_sec = F.layer_norm(feature_sec + feature_sec_re, [self.in_dim])
feature_doc = feature_sec.clone()
feature_doc_re = feature_doc.clone()
for i in range(0, self.iter):
feature_doc = self.gat3[i](feature_doc, doc_adj, docnum, secnum)
feature_doc = F.layer_norm(feature_doc + feature_doc_re, [self.in_dim])
feature_sec[:, :-docnum-secnum-1, :] = adj[:, :-docnum-secnum-1, -docnum-secnum-1:-docnum-1] @ feature_sec[:, -docnum-secnum-1:-docnum-1, :]
feature_doc[:, -docnum-secnum-1:-docnum-1, :] = adj[:, -docnum-secnum-1:-docnum-1, -docnum-1:] @ feature_doc[:, -docnum-1:, :]
feature_doc[:, :-docnum-secnum-1, :] = adj[:, :-docnum-secnum-1, -docnum-secnum-1:-docnum-1] @ feature_doc[:, -docnum-secnum-1:-docnum-1, :]
feature = torch.concat([feature_doc, feature_sec, feature_sen], dim=-1)
feature = F.layer_norm(self.out_ffn(feature) + feature_resi, [self.in_dim])
return feature
class Contrast_Encoder(nn.Module):
def __init__(self, input_dim, hidden_dim, heads, act=nn.LeakyReLU(0.1), dropout_p=0.3):
super(Contrast_Encoder, self).__init__()
self.graph_encoder = StepWiseGraphConvLayer(in_dim=input_dim, hid_dim=hidden_dim,
dropout_p=dropout_p, act=act, nheads=heads, iter=1)
self.common_proj_mlp = MLP([input_dim, hidden_dim, input_dim], layers=2, dropout_p=dropout_p, act=act, keep_last_layer=False)
def forward(self, p_gfeature, doc_lens, p_adj, docnum, secnum):
posVec = torch.cat([PositionVec[:l] for l in doc_lens] + [torch.zeros(secnum+docnum+1, 768).float().to(device)], dim=0)
p_gfeature = p_gfeature + posVec.unsqueeze(0)
pg = self.graph_encoder(p_gfeature, p_adj, docnum, secnum)
pg = self.common_proj_mlp(pg)
return pg
class End2End_Encoder(nn.Module):
def __init__(self, input_dim, hidden_dim, heads, act=nn.LeakyReLU(0.1), dropout_p=0.3):
super(End2End_Encoder, self).__init__()
self.graph_encoder = StepWiseGraphConvLayer(in_dim=input_dim, hid_dim=hidden_dim,
dropout_p=dropout_p, act=act, nheads=heads, iter=1)
self.dropout = nn.Dropout(dropout_p)
self.out_proj_layer_mlp = MLP([input_dim, hidden_dim, input_dim], layers=2, dropout_p=dropout_p, act=act, keep_last_layer=False)
self.linear = MLP([input_dim, 1], layers=1, dropout_p=dropout_p, act=act, keep_last_layer=True)
def forward(self, x, doc_lens, adj, docnum, secnum):
x = self.graph_encoder(x, adj, docnum, secnum)
x = x[:, :-docnum-secnum-1, :]
x = self.out_proj_layer_mlp(x)
x = self.linear(x)
return x
def _similarity(h1: torch.Tensor, h2: torch.Tensor):
h1 = F.normalize(h1)
h2 = F.normalize(h2)
return h1 @ h2.t()
class InfoNCE(nn.Module):
def __init__(self, tau):
super(InfoNCE, self).__init__()
self.tau = tau
def forward(self, anchor, sample, pos_mask, neg_mask, *args, **kwargs):
sim = _similarity(anchor, sample) / self.tau
if len(anchor) > 1:
sim, _ = torch.max(sim, dim=0)
exp_sim = torch.exp(sim)
loss = torch.log((exp_sim * pos_mask).sum(dim=1)) - torch.log((exp_sim * (pos_mask + neg_mask)).sum(dim=1))
return -loss.mean()
class Cluster:
def __init__(self, sent_texts, sent_vecs, doc_lens, doc_sec_mask, sec_sen_mask):
assert len(sent_vecs) == len(sent_texts)
self.docnum = len(doc_sec_mask)
self.secnum = len(sec_sen_mask)
self.feature = torch.cat((torch.stack(sent_vecs, dim=0), torch.zeros((self.secnum+self.docnum+1, sent_vecs[0].shape[0]))), dim=0).to(device)
self.adj = torch.from_numpy(self.mask_to_adj(doc_sec_mask, sec_sen_mask)).float().to(device)
self.sent_text = np.array(sent_texts)
self.doc_lens = doc_lens
self.init_node_vec()
self.feature = self.feature.float()
def init_node_vec(self):
docnum, secnum = self.docnum, self.secnum
for i in range(-secnum-docnum-1, -docnum-1):
mask = self.adj[i].clone()
mask[-secnum-docnum-1:] = 0
self.feature[i] = torch.mean(self.feature[mask.bool()], dim=0)
for i in range(-docnum-1, -1):
mask = self.adj[i].clone()
mask[-docnum-1:] = 0
self.feature[i] = torch.mean(self.feature[mask.bool()], dim=0)
self.feature[-1] = torch.mean(self.feature[-docnum-1:-1], dim=0)
def mask_to_adj(self, doc_sec_mask, sec_sen_mask):
sen_num = sec_sen_mask.shape[1]
sec_num = sec_sen_mask.shape[0]
doc_num = doc_sec_mask.shape[0]
adj = np.zeros((sen_num+sec_num+doc_num+1, sen_num+sec_num+doc_num+1))
# section connection
adj[-sec_num-doc_num-1:-doc_num-1, 0:-sec_num-doc_num-1] = sec_sen_mask
adj[0:-sec_num-doc_num-1, -sec_num-doc_num-1:-doc_num-1] = sec_sen_mask.T
for i in range(0, doc_num):
doc_mask = doc_sec_mask[i]
doc_mask = doc_mask.reshape((1, len(doc_mask)))
adj[sen_num:-doc_num-1, sen_num:-doc_num-1] += doc_mask * doc_mask.T
# doc connection
adj[-doc_num-1:-1, -sec_num-doc_num-1:-doc_num-1] = doc_sec_mask
adj[-sec_num-doc_num-1:-doc_num-1, -doc_num-1:-1] = doc_sec_mask.T
adj[-doc_num-1:, -doc_num-1:] = 1
#build sentence connection
for i in range(0, sec_num):
sec_mask = sec_sen_mask[i]
sec_mask = sec_mask.reshape((1, len(sec_mask)))
adj[:sen_num, :sen_num] += sec_mask * sec_mask.T
return adj
def meanTokenVecs(text):
sent = text.lower()
input_ids = torch.tensor([tokenizer.encode(sent)])
tokenized_text = tokenizer.tokenize(sent)
with torch.no_grad():
features = phobert(input_ids)
wordVecs, buffer, buffer_str = {}, [], ''
for token in zip(tokenized_text, features.last_hidden_state[0, 1:-1,:]):
if token[0][-2:] == '@@':
buffer.append(token[1])
buffer_str += token[0][:-2]
continue
if buffer:
buffer.append(token[1])
buffer_str += token[0]
wordVecs[buffer_str] = torch.mean(torch.stack(buffer), dim=0)
buffer, buffer_str = [], ''
else:
wordVecs[token[0]] = token[1]
return torch.mean(torch.stack([vec for w, vec in wordVecs.items() if w not in string.punctuation]), dim=0)
def getPositionEncoding(pos, d=768, n=10000):
P = np.zeros(d)
for i in np.arange(int(d/2)):
denominator = np.power(n, 2*i/d)
P[2*i] = np.sin(pos/denominator)
P[2*i+1] = np.cos(pos/denominator)
return P
PositionVec = torch.stack([torch.from_numpy(getPositionEncoding(i, d=768)) for i in range(200)], dim=0).float().to(device)
stop_w = ['...']
with open('./vietnamese-stopwords-dash.txt', 'r', encoding='utf-8') as f:
for w in f.readlines():
stop_w.append(w.strip())
stop_w.extend([c for c in '!"#$%&\'()*+,./:;<=>?@[\\]^`{|}~…“”’‘'])
with open('./LDA_models.pkl', mode='rb') as fp:
cate_models = pickle.load(fp)
def removeRedundant(text):
text = text.lower()
words = [w for w in text.split(' ') if w not in stop_w]
return ' '.join(words)
def divideSection(doc_text, category):
assert category in cate_models, 'invalid category'
sent_para, para_sec, sent_sec = {}, {}, {}
paras = [para for para in doc_text.split('\n') if para != '']
all_sents = []
# prepare sent_Para
sentcnt = 0
for i, para in enumerate(paras):
sents = [word_tokenize(sent, format="text") for sent in sent_tokenize(para) if sent != '']
all_sents.extend(sents)
for ii, sent in enumerate(sents):
sent_para[sentcnt + ii] = i
sent = removeRedundant(sent)
sentcnt += len(sents)
# prepare para_sec
paras = [removeRedundant(para) for para in paras]
tf, lda_model = cate_models[category]
X = tf.transform(paras)
lda_top = lda_model.transform(X)
for i, para_top in enumerate(lda_top):
para_sec[i] = para_top.argmax()
# output sent_sec
for k, v in sent_para.items():
sent_sec[k] = para_sec[v]
return sent_sec, all_sents
def loadClusterData(docs_org, category): # docs_org: list of text for each document
seclist, docs = {}, []
for d, doc in enumerate(docs_org):
seclist[d], sentTexts = divideSection(doc, category)
docs.append(sentTexts)
secnum = 0
for k, val_dict in seclist.items():
vals = set(val_dict.values())
for ki, vi in val_dict.items():
for i, v in enumerate(vals):
if vi == v:
val_dict[ki] = i + secnum
break
seclist[k] = val_dict
secnum += len(vals)
sents, sentVecs, secIDs, doc_lens = [], [], [], []
sentnum = sum([len(doc.values()) for doc in seclist.values()])
doc_sec_mask = np.zeros((len(docs), secnum))
sec_sen_mask = np.zeros((secnum, sentnum))
cursec, cursent = 0, 0
for d, doc in enumerate(docs):
doc_lens.append(len(doc))
doc_endsec = max(seclist[d].values())
doc_sec_mask[d][cursec:doc_endsec + 1] = 1
cursec = doc_endsec + 1
for s, sent in enumerate(doc):
sents.append(sent)
sentVecs.append(meanTokenVecs(sent))
sec_sen_mask[seclist[d][s], cursent] = 1
cursent += 1
return Cluster(sents, sentVecs, doc_lens, doc_sec_mask, sec_sen_mask)
def val_e2e(data, model, max_word_num=200, c_model=None):
model.eval()
c_model.eval()
feature = data.feature.unsqueeze(0)
doc_lens = data.doc_lens
adj = data.adj.unsqueeze(0)
docnum = data.docnum
secnum = data.secnum
with torch.no_grad():
feature = c_model(feature, doc_lens, adj, docnum, secnum)
x = model(feature, doc_lens, adj, docnum, secnum)
scores = torch.sigmoid(x.squeeze(-1))
return get_summary(scores[0], data.sent_text, max_word_num)
def get_summary(scores, sents, max_word_num=200):
ranked_score_idxs = torch.argsort(scores, dim=0, descending=True)
wordCnt = 0
summSentIDList = []
for i in ranked_score_idxs:
if wordCnt >= max_word_num: break
s = sents[i]
replicated = False
for chosedID in summSentIDList:
if getRouge2(sents[chosedID], s, 'p') >= 0.45:
replicated = True
break
if replicated: continue
wordCnt += len(s.split(' '))
summSentIDList.append(i)
summSentIDList = sorted(summSentIDList)
return ' '.join([s for i, s in enumerate(sents) if i in summSentIDList])
c_model = Contrast_Encoder(768, 1024, 4, dropout_p=0.3).to(device)
model = End2End_Encoder(768, 1024, 4, dropout_p=0.3).to(device)
model.load_state_dict(torch.load('./e_25_0.3071.mdl', map_location=device), strict=False)
c_model.load_state_dict(torch.load('./c_25_0.3071.mdl', map_location=device), strict=False)
def infer(docs, category):
# docs = [text.strip() for text in full_text.split('<><><><><>')]
docs = [text.strip() for text in docs]
data_tree = loadClusterData(docs, category)
summ = val_e2e(data_tree, model, c_model=c_model, max_word_num=200)
summ = re.sub(r'\s+([.,;:"?()/!?])', r'\1', summ.replace('_', ' '))
return summ, docs