davidlee1102 commited on
Commit
f0372d1
1 Parent(s): 2f8c020
Files changed (3) hide show
  1. app.py +1 -3
  2. emotion_model.py +3 -1
  3. pre_processing_data.py +4 -2
app.py CHANGED
@@ -1,16 +1,14 @@
1
  import streamlit as st
2
 
3
  from emotion_model import emotion_predict
4
- from pre_processing_data import user_capture
5
 
6
  name = st.text_input("Enter your sentence here")
7
  if (st.button('Submit')):
8
  result = name.title()
9
  try:
10
  result_check = emotion_predict(result)
11
- user_capture(result, result_check)
12
  except Exception as E:
13
  result_check = "Error"
14
  print(E)
15
-
16
  st.success(result_check)
 
 
1
  import streamlit as st
2
 
3
  from emotion_model import emotion_predict
 
4
 
5
  name = st.text_input("Enter your sentence here")
6
  if (st.button('Submit')):
7
  result = name.title()
8
  try:
9
  result_check = emotion_predict(result)
 
10
  except Exception as E:
11
  result_check = "Error"
12
  print(E)
 
13
  st.success(result_check)
14
+ user_response = st.text_input("Please give your emotion that you are thinking is correct")
emotion_model.py CHANGED
@@ -3,7 +3,7 @@ import tensorflow as tf
3
  import tensorflow_addons as tfa
4
 
5
  from constance_data import emotion_track_list, decode_cut_list
6
- from pre_processing_data import preprocessing_data, pre_processing_data_2, text_transform
7
 
8
 
9
  def emotion_predict(sentence: str):
@@ -12,6 +12,7 @@ def emotion_predict(sentence: str):
12
  model = tf.keras.models.load_model("model/nlp_surrey_coursework_hunglenhat")
13
  model.compile(loss='sparse_categorical_crossentropy',
14
  optimizer=tfa.optimizers.AdamW(learning_rate=lr, weight_decay=wd), metrics=['accuracy'])
 
15
  sentence = pre_processing_data_2(sentence)
16
  if not sentence:
17
  sentence = preprocessing_data(sentence)
@@ -23,4 +24,5 @@ def emotion_predict(sentence: str):
23
  print(E)
24
  index_max = np.argmax(sentence)
25
  result = emotion_track_list[decode_cut_list[index_max]]
 
26
  return result
 
3
  import tensorflow_addons as tfa
4
 
5
  from constance_data import emotion_track_list, decode_cut_list
6
+ from pre_processing_data import preprocessing_data, pre_processing_data_2, text_transform, user_capture
7
 
8
 
9
  def emotion_predict(sentence: str):
 
12
  model = tf.keras.models.load_model("model/nlp_surrey_coursework_hunglenhat")
13
  model.compile(loss='sparse_categorical_crossentropy',
14
  optimizer=tfa.optimizers.AdamW(learning_rate=lr, weight_decay=wd), metrics=['accuracy'])
15
+ sentence_temp = sentence
16
  sentence = pre_processing_data_2(sentence)
17
  if not sentence:
18
  sentence = preprocessing_data(sentence)
 
24
  print(E)
25
  index_max = np.argmax(sentence)
26
  result = emotion_track_list[decode_cut_list[index_max]]
27
+ user_capture(sentence_temp, result)
28
  return result
pre_processing_data.py CHANGED
@@ -86,13 +86,15 @@ def preprocessing_data(string_text):
86
  return string_output
87
 
88
 
89
- def user_capture(user_input, emotion_predict):
90
  dataframe_capture = pd.read_csv('user_logs.csv')
91
  user_input_logs = pd.DataFrame({
92
  "user_input": [user_input],
93
- "emotion_predict": [emotion_predict],
94
  "time_logs": [datetime.now()],
95
  })
96
 
97
  dataframe_capture = pd.concat([dataframe_capture, user_input_logs], ignore_index=True)
98
  dataframe_capture.to_csv("user_logs.csv", index=False)
 
 
 
86
  return string_output
87
 
88
 
89
+ def user_capture(user_input, emotion_prd):
90
  dataframe_capture = pd.read_csv('user_logs.csv')
91
  user_input_logs = pd.DataFrame({
92
  "user_input": [user_input],
93
+ "emotion_predict": [emotion_prd],
94
  "time_logs": [datetime.now()],
95
  })
96
 
97
  dataframe_capture = pd.concat([dataframe_capture, user_input_logs], ignore_index=True)
98
  dataframe_capture.to_csv("user_logs.csv", index=False)
99
+ print("Done Recorded")
100
+ return None