Initial Commit With ❤
Browse files- chatbot.py +79 -0
- requirements.txt +7 -0
chatbot.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def get_pdf_text(pdf_docs):
|
2 |
+
text = ""
|
3 |
+
for pdf in pdf_docs:
|
4 |
+
pdf_reader = PdfReader(pdf)
|
5 |
+
for page in pdf_reader.pages:
|
6 |
+
text += page.extract_text()
|
7 |
+
return text
|
8 |
+
|
9 |
+
# chuck_size = 1000, chunk_overlap = 200 (for shorted PDFs)
|
10 |
+
def get_text_chunks(text):
|
11 |
+
text_splitter= RecursiveCharacterTextSplitter(
|
12 |
+
chunk_size=10000,
|
13 |
+
chunk_overlap=1000,
|
14 |
+
# length_function=len
|
15 |
+
)
|
16 |
+
chunks=text_splitter.split_text(text)
|
17 |
+
return chunks
|
18 |
+
|
19 |
+
# Converting into Vector data/store (can also be stored)
|
20 |
+
def get_vector_store(text_chunks):
|
21 |
+
# embeddings = GoogleGenerativeAIEmbeddings(model='embedding-gecko-001')
|
22 |
+
embeddings = GoogleGenerativeAIEmbeddings(model='models/embedding-001')
|
23 |
+
vector_store = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
24 |
+
vector_store.save_local("faiss_index")
|
25 |
+
# return vector_store
|
26 |
+
|
27 |
+
def get_conversation_chain():
|
28 |
+
prompt_template="""Answer the query as detailed as possible from the provided context, make sure to provide all the details, if answeris not in
|
29 |
+
the provided context, just say, "Answer is not available in the provided documents", don't provide the wrong answer:\n {context}? \n Query: {query}? \n
|
30 |
+
Answer:
|
31 |
+
"""
|
32 |
+
|
33 |
+
model=ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3)
|
34 |
+
prompt=PromptTemplate(template=prompt_template, input_variables=["context", "query"])
|
35 |
+
# chain=load_qa_chain(llm=model, chain_type="stuff", prompt=prompt)
|
36 |
+
chain=load_qa_chain(model, chain_type="stuff", prompt=prompt)
|
37 |
+
return chain
|
38 |
+
|
39 |
+
def user_input(user_question):
|
40 |
+
# embeddings = GoogleGenerativeAIEmbeddings(model='embedding-gecko-001')
|
41 |
+
embeddings = GoogleGenerativeAIEmbeddings(model='models/embedding-001')
|
42 |
+
|
43 |
+
# Loading the embeddings
|
44 |
+
new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
|
45 |
+
docs = new_db.similarity_search(user_question)
|
46 |
+
|
47 |
+
chain=get_conversation_chain()
|
48 |
+
|
49 |
+
response = chain(
|
50 |
+
{"input_documents": docs, "question": user_question}
|
51 |
+
, return_only_outputs=True)
|
52 |
+
|
53 |
+
print(response)
|
54 |
+
st.write("Reply: ", response["output_text"])
|
55 |
+
|
56 |
+
# Frontend page Processor
|
57 |
+
def main():
|
58 |
+
st.set_page_config(page_title="PDF Chatbot")
|
59 |
+
st.header("PDF Chatbot made with ❤")
|
60 |
+
|
61 |
+
user_question = st.text_input("Ask a question about your documents:")
|
62 |
+
|
63 |
+
if user_question:
|
64 |
+
user_input(user_question)
|
65 |
+
|
66 |
+
with st.sidebar:
|
67 |
+
st.title("Menu:")
|
68 |
+
pdf_docs = st.file_uploader(
|
69 |
+
"Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
|
70 |
+
if st.button("Submit & Process"):
|
71 |
+
with st.spinner("Ruko Padh raha hu..."):
|
72 |
+
raw_text = get_pdf_text(pdf_docs)
|
73 |
+
text_chunks = get_text_chunks(raw_text)
|
74 |
+
get_vector_store(text_chunks)
|
75 |
+
st.success("Saare documents padh liya. Ab swaal pucho 😤")
|
76 |
+
|
77 |
+
|
78 |
+
if __name__ == '__main__':
|
79 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
google-generativeai
|
3 |
+
langchain
|
4 |
+
PyPDF2
|
5 |
+
chromadb
|
6 |
+
faiss-cpu
|
7 |
+
langchain_google_genai
|