hunterXdk commited on
Commit
dc294a4
·
verified ·
1 Parent(s): 96501a7
Files changed (1) hide show
  1. app.py +6 -6
app.py CHANGED
@@ -93,7 +93,7 @@ def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, pr
93
  llm_name = list_llm[llm_option]
94
  print("llm_name: ",llm_name)
95
  qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
96
- return qa_chain, "QA chain Taiyar hai. Ab swaal pooch sakti ho!"
97
 
98
 
99
  def format_chat_history(message, chat_history):
@@ -138,16 +138,16 @@ def demo():
138
  vector_db = gr.State()
139
  qa_chain = gr.State()
140
  gr.HTML("<center><h1>RAG PDF chatbot</h1><center>")
141
- gr.Markdown("""<b>Apne PDF k related swaal poochiye!</b> This AI agent is designed to assist Pooja only to help her with the PDF documents. The app is hosted here for the sole purpose of demonstration. \
142
  <b>Please do not upload confidential documents.</b>
143
  """)
144
  with gr.Row():
145
  with gr.Column(scale = 86):
146
- gr.Markdown("<b>Step 1 - Yaha apni PDF Upload karo..</b>")
147
  with gr.Row():
148
  document = gr.Files(height=300, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload PDF documents")
149
  with gr.Row():
150
- db_btn = gr.Button("Padho Ye PDFs!!!")
151
  with gr.Row():
152
  db_progress = gr.Textbox(value="Not initialized", show_label=False) # label="Vector database status",
153
  gr.Markdown("<style>body { font-size: 16px; }</style><b>Select Large Language Model (LLM) and input parameters</b>")
@@ -167,7 +167,7 @@ def demo():
167
  llm_progress = gr.Textbox(value="Not initialized", show_label=False) # label="Chatbot status",
168
 
169
  with gr.Column(scale = 200):
170
- gr.Markdown("<b>Step 2 - Dinesh se na sahi, PDF se baatein karo</b>")
171
  chatbot = gr.Chatbot(height=505)
172
  with gr.Accordion("Relevent context from the source document", open=False):
173
  with gr.Row():
@@ -182,7 +182,7 @@ def demo():
182
  with gr.Row():
183
  msg = gr.Textbox(placeholder="Ask a question", container=True)
184
  with gr.Row():
185
- submit_btn = gr.Button("Ab Batao..!")
186
  clear_btn = gr.ClearButton([msg, chatbot], value="Clear")
187
 
188
  # Preprocessing events
 
93
  llm_name = list_llm[llm_option]
94
  print("llm_name: ",llm_name)
95
  qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
96
+ return qa_chain, "QA chain initialized. Chatbot is ready!"
97
 
98
 
99
  def format_chat_history(message, chat_history):
 
138
  vector_db = gr.State()
139
  qa_chain = gr.State()
140
  gr.HTML("<center><h1>RAG PDF chatbot</h1><center>")
141
+ gr.Markdown("""<b>Query your PDF documents!</b> This AI agent is designed to perform retrieval augmented generation (RAG) on PDF documents. The app is hosted on Hugging Face Hub for the sole purpose of demonstration. \
142
  <b>Please do not upload confidential documents.</b>
143
  """)
144
  with gr.Row():
145
  with gr.Column(scale = 86):
146
+ gr.Markdown("<b>Step 1 - Upload PDF documents and Initialize RAG pipeline</b>")
147
  with gr.Row():
148
  document = gr.Files(height=300, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload PDF documents")
149
  with gr.Row():
150
+ db_btn = gr.Button("Create vector database")
151
  with gr.Row():
152
  db_progress = gr.Textbox(value="Not initialized", show_label=False) # label="Vector database status",
153
  gr.Markdown("<style>body { font-size: 16px; }</style><b>Select Large Language Model (LLM) and input parameters</b>")
 
167
  llm_progress = gr.Textbox(value="Not initialized", show_label=False) # label="Chatbot status",
168
 
169
  with gr.Column(scale = 200):
170
+ gr.Markdown("<b>Step 2 - Chat with your Document</b>")
171
  chatbot = gr.Chatbot(height=505)
172
  with gr.Accordion("Relevent context from the source document", open=False):
173
  with gr.Row():
 
182
  with gr.Row():
183
  msg = gr.Textbox(placeholder="Ask a question", container=True)
184
  with gr.Row():
185
+ submit_btn = gr.Button("Submit")
186
  clear_btn = gr.ClearButton([msg, chatbot], value="Clear")
187
 
188
  # Preprocessing events