|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
import torch |
|
|
|
|
|
model_name = "distilbert-base-uncased-finetuned-sst-2-english" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForSequenceClassification.from_pretrained(model_name) |
|
|
|
def classify_text(text): |
|
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True) |
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
logits = outputs.logits |
|
predicted_class = torch.argmax(logits, dim=1).item() |
|
return f"Predicted class: {predicted_class}" |
|
|
|
import gradio as gr |
|
|
|
interface = gr.Interface( |
|
fn=classify_text, |
|
inputs="text", |
|
outputs="text", |
|
title="BERT Text Classifier" |
|
) |
|
|
|
interface.launch() |
|
|
|
|