Spaces:
Build error
Build error
File size: 59,061 Bytes
8fbac9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 |
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "Prompt Engineering for ImageNet.ipynb",
"provenance": [],
"collapsed_sections": []
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"accelerator": "GPU",
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"66a1639713ae441d8a9b873381f9d774": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"state": {
"_view_name": "HBoxView",
"_dom_classes": [],
"_model_name": "HBoxModel",
"_view_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_view_count": null,
"_view_module_version": "1.5.0",
"box_style": "",
"layout": "IPY_MODEL_610b775178c645e2b4663b77cc0c67b6",
"_model_module": "@jupyter-widgets/controls",
"children": [
"IPY_MODEL_412dd15f0d8542f5ab2730f8616fb582",
"IPY_MODEL_5e6315f36b4e4eeea5c6294b024e0c97"
]
}
},
"610b775178c645e2b4663b77cc0c67b6": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_view_name": "LayoutView",
"grid_template_rows": null,
"right": null,
"justify_content": null,
"_view_module": "@jupyter-widgets/base",
"overflow": null,
"_model_module_version": "1.2.0",
"_view_count": null,
"flex_flow": null,
"width": null,
"min_width": null,
"border": null,
"align_items": null,
"bottom": null,
"_model_module": "@jupyter-widgets/base",
"top": null,
"grid_column": null,
"overflow_y": null,
"overflow_x": null,
"grid_auto_flow": null,
"grid_area": null,
"grid_template_columns": null,
"flex": null,
"_model_name": "LayoutModel",
"justify_items": null,
"grid_row": null,
"max_height": null,
"align_content": null,
"visibility": null,
"align_self": null,
"height": null,
"min_height": null,
"padding": null,
"grid_auto_rows": null,
"grid_gap": null,
"max_width": null,
"order": null,
"_view_module_version": "1.2.0",
"grid_template_areas": null,
"object_position": null,
"object_fit": null,
"grid_auto_columns": null,
"margin": null,
"display": null,
"left": null
}
},
"412dd15f0d8542f5ab2730f8616fb582": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"state": {
"_view_name": "ProgressView",
"style": "IPY_MODEL_085d5388abda4202bfa66d0c088452f8",
"_dom_classes": [],
"description": "100%",
"_model_name": "FloatProgressModel",
"bar_style": "success",
"max": 1000,
"_view_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"value": 1000,
"_view_count": null,
"_view_module_version": "1.5.0",
"orientation": "horizontal",
"min": 0,
"description_tooltip": null,
"_model_module": "@jupyter-widgets/controls",
"layout": "IPY_MODEL_f75124b64aa147c693c67a78f8e3a231"
}
},
"5e6315f36b4e4eeea5c6294b024e0c97": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"state": {
"_view_name": "HTMLView",
"style": "IPY_MODEL_6e5676a054874243b55fc6d120a07d01",
"_dom_classes": [],
"description": "",
"_model_name": "HTMLModel",
"placeholder": "β",
"_view_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"value": " 1000/1000 [16:51<00:00, 1.01s/it]",
"_view_count": null,
"_view_module_version": "1.5.0",
"description_tooltip": null,
"_model_module": "@jupyter-widgets/controls",
"layout": "IPY_MODEL_dc6d1416c01a4047935ee15c3fd2eb1c"
}
},
"085d5388abda4202bfa66d0c088452f8": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"state": {
"_view_name": "StyleView",
"_model_name": "ProgressStyleModel",
"description_width": "initial",
"_view_module": "@jupyter-widgets/base",
"_model_module_version": "1.5.0",
"_view_count": null,
"_view_module_version": "1.2.0",
"bar_color": null,
"_model_module": "@jupyter-widgets/controls"
}
},
"f75124b64aa147c693c67a78f8e3a231": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_view_name": "LayoutView",
"grid_template_rows": null,
"right": null,
"justify_content": null,
"_view_module": "@jupyter-widgets/base",
"overflow": null,
"_model_module_version": "1.2.0",
"_view_count": null,
"flex_flow": null,
"width": null,
"min_width": null,
"border": null,
"align_items": null,
"bottom": null,
"_model_module": "@jupyter-widgets/base",
"top": null,
"grid_column": null,
"overflow_y": null,
"overflow_x": null,
"grid_auto_flow": null,
"grid_area": null,
"grid_template_columns": null,
"flex": null,
"_model_name": "LayoutModel",
"justify_items": null,
"grid_row": null,
"max_height": null,
"align_content": null,
"visibility": null,
"align_self": null,
"height": null,
"min_height": null,
"padding": null,
"grid_auto_rows": null,
"grid_gap": null,
"max_width": null,
"order": null,
"_view_module_version": "1.2.0",
"grid_template_areas": null,
"object_position": null,
"object_fit": null,
"grid_auto_columns": null,
"margin": null,
"display": null,
"left": null
}
},
"6e5676a054874243b55fc6d120a07d01": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"state": {
"_view_name": "StyleView",
"_model_name": "DescriptionStyleModel",
"description_width": "",
"_view_module": "@jupyter-widgets/base",
"_model_module_version": "1.5.0",
"_view_count": null,
"_view_module_version": "1.2.0",
"_model_module": "@jupyter-widgets/controls"
}
},
"dc6d1416c01a4047935ee15c3fd2eb1c": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_view_name": "LayoutView",
"grid_template_rows": null,
"right": null,
"justify_content": null,
"_view_module": "@jupyter-widgets/base",
"overflow": null,
"_model_module_version": "1.2.0",
"_view_count": null,
"flex_flow": null,
"width": null,
"min_width": null,
"border": null,
"align_items": null,
"bottom": null,
"_model_module": "@jupyter-widgets/base",
"top": null,
"grid_column": null,
"overflow_y": null,
"overflow_x": null,
"grid_auto_flow": null,
"grid_area": null,
"grid_template_columns": null,
"flex": null,
"_model_name": "LayoutModel",
"justify_items": null,
"grid_row": null,
"max_height": null,
"align_content": null,
"visibility": null,
"align_self": null,
"height": null,
"min_height": null,
"padding": null,
"grid_auto_rows": null,
"grid_gap": null,
"max_width": null,
"order": null,
"_view_module_version": "1.2.0",
"grid_template_areas": null,
"object_position": null,
"object_fit": null,
"grid_auto_columns": null,
"margin": null,
"display": null,
"left": null
}
},
"84f80a7f3e764346969a347b0f71b24e": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"state": {
"_view_name": "HBoxView",
"_dom_classes": [],
"_model_name": "HBoxModel",
"_view_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_view_count": null,
"_view_module_version": "1.5.0",
"box_style": "",
"layout": "IPY_MODEL_392656f01b2945f3bd7903783ed8cc96",
"_model_module": "@jupyter-widgets/controls",
"children": [
"IPY_MODEL_8e47a435519b4ce090879b4be2f61f99",
"IPY_MODEL_41b1ed6b0a9745c1a595377670b15ff4"
]
}
},
"392656f01b2945f3bd7903783ed8cc96": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_view_name": "LayoutView",
"grid_template_rows": null,
"right": null,
"justify_content": null,
"_view_module": "@jupyter-widgets/base",
"overflow": null,
"_model_module_version": "1.2.0",
"_view_count": null,
"flex_flow": null,
"width": null,
"min_width": null,
"border": null,
"align_items": null,
"bottom": null,
"_model_module": "@jupyter-widgets/base",
"top": null,
"grid_column": null,
"overflow_y": null,
"overflow_x": null,
"grid_auto_flow": null,
"grid_area": null,
"grid_template_columns": null,
"flex": null,
"_model_name": "LayoutModel",
"justify_items": null,
"grid_row": null,
"max_height": null,
"align_content": null,
"visibility": null,
"align_self": null,
"height": null,
"min_height": null,
"padding": null,
"grid_auto_rows": null,
"grid_gap": null,
"max_width": null,
"order": null,
"_view_module_version": "1.2.0",
"grid_template_areas": null,
"object_position": null,
"object_fit": null,
"grid_auto_columns": null,
"margin": null,
"display": null,
"left": null
}
},
"8e47a435519b4ce090879b4be2f61f99": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"state": {
"_view_name": "ProgressView",
"style": "IPY_MODEL_179b8ae1eb7f4a828f953e889b141725",
"_dom_classes": [],
"description": "100%",
"_model_name": "FloatProgressModel",
"bar_style": "success",
"max": 313,
"_view_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"value": 313,
"_view_count": null,
"_view_module_version": "1.5.0",
"orientation": "horizontal",
"min": 0,
"description_tooltip": null,
"_model_module": "@jupyter-widgets/controls",
"layout": "IPY_MODEL_d8708e8414fd44f4abd6590c9b57996f"
}
},
"41b1ed6b0a9745c1a595377670b15ff4": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"state": {
"_view_name": "HTMLView",
"style": "IPY_MODEL_800e30f5b4f24475a2b0046da0703631",
"_dom_classes": [],
"description": "",
"_model_name": "HTMLModel",
"placeholder": "β",
"_view_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"value": " 313/313 [02:31<00:00, 2.07it/s]",
"_view_count": null,
"_view_module_version": "1.5.0",
"description_tooltip": null,
"_model_module": "@jupyter-widgets/controls",
"layout": "IPY_MODEL_8764308b948745f1a677332fd21fcaf0"
}
},
"179b8ae1eb7f4a828f953e889b141725": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"state": {
"_view_name": "StyleView",
"_model_name": "ProgressStyleModel",
"description_width": "initial",
"_view_module": "@jupyter-widgets/base",
"_model_module_version": "1.5.0",
"_view_count": null,
"_view_module_version": "1.2.0",
"bar_color": null,
"_model_module": "@jupyter-widgets/controls"
}
},
"d8708e8414fd44f4abd6590c9b57996f": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_view_name": "LayoutView",
"grid_template_rows": null,
"right": null,
"justify_content": null,
"_view_module": "@jupyter-widgets/base",
"overflow": null,
"_model_module_version": "1.2.0",
"_view_count": null,
"flex_flow": null,
"width": null,
"min_width": null,
"border": null,
"align_items": null,
"bottom": null,
"_model_module": "@jupyter-widgets/base",
"top": null,
"grid_column": null,
"overflow_y": null,
"overflow_x": null,
"grid_auto_flow": null,
"grid_area": null,
"grid_template_columns": null,
"flex": null,
"_model_name": "LayoutModel",
"justify_items": null,
"grid_row": null,
"max_height": null,
"align_content": null,
"visibility": null,
"align_self": null,
"height": null,
"min_height": null,
"padding": null,
"grid_auto_rows": null,
"grid_gap": null,
"max_width": null,
"order": null,
"_view_module_version": "1.2.0",
"grid_template_areas": null,
"object_position": null,
"object_fit": null,
"grid_auto_columns": null,
"margin": null,
"display": null,
"left": null
}
},
"800e30f5b4f24475a2b0046da0703631": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"state": {
"_view_name": "StyleView",
"_model_name": "DescriptionStyleModel",
"description_width": "",
"_view_module": "@jupyter-widgets/base",
"_model_module_version": "1.5.0",
"_view_count": null,
"_view_module_version": "1.2.0",
"_model_module": "@jupyter-widgets/controls"
}
},
"8764308b948745f1a677332fd21fcaf0": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_view_name": "LayoutView",
"grid_template_rows": null,
"right": null,
"justify_content": null,
"_view_module": "@jupyter-widgets/base",
"overflow": null,
"_model_module_version": "1.2.0",
"_view_count": null,
"flex_flow": null,
"width": null,
"min_width": null,
"border": null,
"align_items": null,
"bottom": null,
"_model_module": "@jupyter-widgets/base",
"top": null,
"grid_column": null,
"overflow_y": null,
"overflow_x": null,
"grid_auto_flow": null,
"grid_area": null,
"grid_template_columns": null,
"flex": null,
"_model_name": "LayoutModel",
"justify_items": null,
"grid_row": null,
"max_height": null,
"align_content": null,
"visibility": null,
"align_self": null,
"height": null,
"min_height": null,
"padding": null,
"grid_auto_rows": null,
"grid_gap": null,
"max_width": null,
"order": null,
"_view_module_version": "1.2.0",
"grid_template_areas": null,
"object_position": null,
"object_fit": null,
"grid_auto_columns": null,
"margin": null,
"display": null,
"left": null
}
}
}
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "53N4k0pj_9qL"
},
"source": [
"# Preparation for Colab\n",
"\n",
"Make sure you're running a GPU runtime; if not, select \"GPU\" as the hardware accelerator in Runtime > Change Runtime Type in the menu. The next cells will install the `clip` package and its dependencies, and check if PyTorch 1.7.1 or later is installed."
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "0BpdJkdBssk9",
"outputId": "41a4070f-5321-4fc4-bd4d-0b5c1f476d56"
},
"source": [
"! pip install ftfy regex tqdm\n",
"! pip install git+https://github.com/openai/CLIP.git"
],
"execution_count": 1,
"outputs": [
{
"output_type": "stream",
"text": [
"Collecting ftfy\n",
" Downloading ftfy-6.0.3.tar.gz (64 kB)\n",
"\u001b[?25l\r\u001b[K |βββββ | 10 kB 14.9 MB/s eta 0:00:01\r\u001b[K |βββββββββββ | 20 kB 18.7 MB/s eta 0:00:01\r\u001b[K |ββββββββββββββββ | 30 kB 9.0 MB/s eta 0:00:01\r\u001b[K |βββββββββββββββββββββ | 40 kB 4.1 MB/s eta 0:00:01\r\u001b[K |ββββββββββββββββββββββββββ | 51 kB 4.6 MB/s eta 0:00:01\r\u001b[K |βββββββββββββββββββββββββββββββ | 61 kB 4.7 MB/s eta 0:00:01\r\u001b[K |ββββββββββββββββββββββββββββββββ| 64 kB 1.3 MB/s \n",
"\u001b[?25hRequirement already satisfied: regex in /usr/local/lib/python3.7/dist-packages (2019.12.20)\n",
"Requirement already satisfied: tqdm in /usr/local/lib/python3.7/dist-packages (4.41.1)\n",
"Requirement already satisfied: wcwidth in /usr/local/lib/python3.7/dist-packages (from ftfy) (0.2.5)\n",
"Building wheels for collected packages: ftfy\n",
" Building wheel for ftfy (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
" Created wheel for ftfy: filename=ftfy-6.0.3-py3-none-any.whl size=41934 sha256=90ec193331444b2c4ff1cd81935e7de42065b89d304db7efac67bcfd87c27873\n",
" Stored in directory: /root/.cache/pip/wheels/19/f5/38/273eb3b5e76dfd850619312f693716ac4518b498f5ffb6f56d\n",
"Successfully built ftfy\n",
"Installing collected packages: ftfy\n",
"Successfully installed ftfy-6.0.3\n",
"Collecting git+https://github.com/openai/CLIP.git\n",
" Cloning https://github.com/openai/CLIP.git to /tmp/pip-req-build-hqnbveqi\n",
" Running command git clone -q https://github.com/openai/CLIP.git /tmp/pip-req-build-hqnbveqi\n",
"Requirement already satisfied: ftfy in /usr/local/lib/python3.7/dist-packages (from clip==1.0) (6.0.3)\n",
"Requirement already satisfied: regex in /usr/local/lib/python3.7/dist-packages (from clip==1.0) (2019.12.20)\n",
"Requirement already satisfied: tqdm in /usr/local/lib/python3.7/dist-packages (from clip==1.0) (4.41.1)\n",
"Requirement already satisfied: torch in /usr/local/lib/python3.7/dist-packages (from clip==1.0) (1.9.0+cu102)\n",
"Requirement already satisfied: torchvision in /usr/local/lib/python3.7/dist-packages (from clip==1.0) (0.10.0+cu102)\n",
"Requirement already satisfied: wcwidth in /usr/local/lib/python3.7/dist-packages (from ftfy->clip==1.0) (0.2.5)\n",
"Requirement already satisfied: typing-extensions in /usr/local/lib/python3.7/dist-packages (from torch->clip==1.0) (3.7.4.3)\n",
"Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from torchvision->clip==1.0) (1.19.5)\n",
"Requirement already satisfied: pillow>=5.3.0 in /usr/local/lib/python3.7/dist-packages (from torchvision->clip==1.0) (7.1.2)\n",
"Building wheels for collected packages: clip\n",
" Building wheel for clip (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
" Created wheel for clip: filename=clip-1.0-py3-none-any.whl size=1369080 sha256=fda43d2b80cfb2b33c2d43e23ea5f53293a9a8b48d5f9e341de527f6adfbf5a3\n",
" Stored in directory: /tmp/pip-ephem-wheel-cache-kmmplf44/wheels/fd/b9/c3/5b4470e35ed76e174bff77c92f91da82098d5e35fd5bc8cdac\n",
"Successfully built clip\n",
"Installing collected packages: clip\n",
"Successfully installed clip-1.0\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "C1hkDT38hSaP",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "e10d4f17-8fa6-4b75-a18f-f0c38990b5a3"
},
"source": [
"import numpy as np\n",
"import torch\n",
"import clip\n",
"from tqdm.notebook import tqdm\n",
"\n",
"print(\"Torch version:\", torch.__version__)\n",
"\n",
"assert torch.__version__.split(\".\") >= [\"1\", \"7\", \"1\"], \"PyTorch 1.7.1 or later is required\""
],
"execution_count": 2,
"outputs": [
{
"output_type": "stream",
"text": [
"Torch version: 1.9.0+cu102\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "eFxgLV5HAEEw"
},
"source": [
"# Loading the model\n",
"\n",
"Download and instantiate a CLIP model using the `clip` module that we just installed."
]
},
{
"cell_type": "code",
"metadata": {
"id": "uLFS29hnhlY4",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "09abb234-693e-4efb-953f-e1847ba95758"
},
"source": [
"clip.available_models()"
],
"execution_count": 3,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"['RN50', 'RN101', 'RN50x4', 'RN50x16', 'ViT-B/32', 'ViT-B/16']"
]
},
"metadata": {
"tags": []
},
"execution_count": 3
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "cboKZocQlSYX",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "240acdd0-ca62-45db-8418-9e4ef73e8aff"
},
"source": [
"model, preprocess = clip.load(\"ViT-B/32\")"
],
"execution_count": 4,
"outputs": [
{
"output_type": "stream",
"text": [
"100%|βββββββββββββββββββββββββββββββββββββββ| 338M/338M [00:05<00:00, 63.6MiB/s]\n"
],
"name": "stderr"
}
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "IBRVTY9lbGm8",
"outputId": "785019a1-1f40-45b0-e349-b0d4ec3173bf"
},
"source": [
"input_resolution = model.visual.input_resolution\n",
"context_length = model.context_length\n",
"vocab_size = model.vocab_size\n",
"\n",
"print(\"Model parameters:\", f\"{np.sum([int(np.prod(p.shape)) for p in model.parameters()]):,}\")\n",
"print(\"Input resolution:\", input_resolution)\n",
"print(\"Context length:\", context_length)\n",
"print(\"Vocab size:\", vocab_size)"
],
"execution_count": 5,
"outputs": [
{
"output_type": "stream",
"text": [
"Model parameters: 151,277,313\n",
"Input resolution: 224\n",
"Context length: 77\n",
"Vocab size: 49408\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "LhO3OtOmF8M4"
},
"source": [
"# Preparing ImageNet labels and prompts\n",
"\n",
"The following cell contains the 1,000 labels for the ImageNet dataset, followed by the text templates we'll use as \"prompt engineering\"."
]
},
{
"cell_type": "code",
"metadata": {
"id": "R2HbOZrqa0jF"
},
"source": [
"imagenet_classes = [\"tench\", \"goldfish\", \"great white shark\", \"tiger shark\", \"hammerhead shark\", \"electric ray\", \"stingray\", \"rooster\", \"hen\", \"ostrich\", \"brambling\", \"goldfinch\", \"house finch\", \"junco\", \"indigo bunting\", \"American robin\", \"bulbul\", \"jay\", \"magpie\", \"chickadee\", \"American dipper\", \"kite (bird of prey)\", \"bald eagle\", \"vulture\", \"great grey owl\", \"fire salamander\", \"smooth newt\", \"newt\", \"spotted salamander\", \"axolotl\", \"American bullfrog\", \"tree frog\", \"tailed frog\", \"loggerhead sea turtle\", \"leatherback sea turtle\", \"mud turtle\", \"terrapin\", \"box turtle\", \"banded gecko\", \"green iguana\", \"Carolina anole\", \"desert grassland whiptail lizard\", \"agama\", \"frilled-necked lizard\", \"alligator lizard\", \"Gila monster\", \"European green lizard\", \"chameleon\", \"Komodo dragon\", \"Nile crocodile\", \"American alligator\", \"triceratops\", \"worm snake\", \"ring-necked snake\", \"eastern hog-nosed snake\", \"smooth green snake\", \"kingsnake\", \"garter snake\", \"water snake\", \"vine snake\", \"night snake\", \"boa constrictor\", \"African rock python\", \"Indian cobra\", \"green mamba\", \"sea snake\", \"Saharan horned viper\", \"eastern diamondback rattlesnake\", \"sidewinder rattlesnake\", \"trilobite\", \"harvestman\", \"scorpion\", \"yellow garden spider\", \"barn spider\", \"European garden spider\", \"southern black widow\", \"tarantula\", \"wolf spider\", \"tick\", \"centipede\", \"black grouse\", \"ptarmigan\", \"ruffed grouse\", \"prairie grouse\", \"peafowl\", \"quail\", \"partridge\", \"african grey parrot\", \"macaw\", \"sulphur-crested cockatoo\", \"lorikeet\", \"coucal\", \"bee eater\", \"hornbill\", \"hummingbird\", \"jacamar\", \"toucan\", \"duck\", \"red-breasted merganser\", \"goose\", \"black swan\", \"tusker\", \"echidna\", \"platypus\", \"wallaby\", \"koala\", \"wombat\", \"jellyfish\", \"sea anemone\", \"brain coral\", \"flatworm\", \"nematode\", \"conch\", \"snail\", \"slug\", \"sea slug\", \"chiton\", \"chambered nautilus\", \"Dungeness crab\", \"rock crab\", \"fiddler crab\", \"red king crab\", \"American lobster\", \"spiny lobster\", \"crayfish\", \"hermit crab\", \"isopod\", \"white stork\", \"black stork\", \"spoonbill\", \"flamingo\", \"little blue heron\", \"great egret\", \"bittern bird\", \"crane bird\", \"limpkin\", \"common gallinule\", \"American coot\", \"bustard\", \"ruddy turnstone\", \"dunlin\", \"common redshank\", \"dowitcher\", \"oystercatcher\", \"pelican\", \"king penguin\", \"albatross\", \"grey whale\", \"killer whale\", \"dugong\", \"sea lion\", \"Chihuahua\", \"Japanese Chin\", \"Maltese\", \"Pekingese\", \"Shih Tzu\", \"King Charles Spaniel\", \"Papillon\", \"toy terrier\", \"Rhodesian Ridgeback\", \"Afghan Hound\", \"Basset Hound\", \"Beagle\", \"Bloodhound\", \"Bluetick Coonhound\", \"Black and Tan Coonhound\", \"Treeing Walker Coonhound\", \"English foxhound\", \"Redbone Coonhound\", \"borzoi\", \"Irish Wolfhound\", \"Italian Greyhound\", \"Whippet\", \"Ibizan Hound\", \"Norwegian Elkhound\", \"Otterhound\", \"Saluki\", \"Scottish Deerhound\", \"Weimaraner\", \"Staffordshire Bull Terrier\", \"American Staffordshire Terrier\", \"Bedlington Terrier\", \"Border Terrier\", \"Kerry Blue Terrier\", \"Irish Terrier\", \"Norfolk Terrier\", \"Norwich Terrier\", \"Yorkshire Terrier\", \"Wire Fox Terrier\", \"Lakeland Terrier\", \"Sealyham Terrier\", \"Airedale Terrier\", \"Cairn Terrier\", \"Australian Terrier\", \"Dandie Dinmont Terrier\", \"Boston Terrier\", \"Miniature Schnauzer\", \"Giant Schnauzer\", \"Standard Schnauzer\", \"Scottish Terrier\", \"Tibetan Terrier\", \"Australian Silky Terrier\", \"Soft-coated Wheaten Terrier\", \"West Highland White Terrier\", \"Lhasa Apso\", \"Flat-Coated Retriever\", \"Curly-coated Retriever\", \"Golden Retriever\", \"Labrador Retriever\", \"Chesapeake Bay Retriever\", \"German Shorthaired Pointer\", \"Vizsla\", \"English Setter\", \"Irish Setter\", \"Gordon Setter\", \"Brittany dog\", \"Clumber Spaniel\", \"English Springer Spaniel\", \"Welsh Springer Spaniel\", \"Cocker Spaniel\", \"Sussex Spaniel\", \"Irish Water Spaniel\", \"Kuvasz\", \"Schipperke\", \"Groenendael dog\", \"Malinois\", \"Briard\", \"Australian Kelpie\", \"Komondor\", \"Old English Sheepdog\", \"Shetland Sheepdog\", \"collie\", \"Border Collie\", \"Bouvier des Flandres dog\", \"Rottweiler\", \"German Shepherd Dog\", \"Dobermann\", \"Miniature Pinscher\", \"Greater Swiss Mountain Dog\", \"Bernese Mountain Dog\", \"Appenzeller Sennenhund\", \"Entlebucher Sennenhund\", \"Boxer\", \"Bullmastiff\", \"Tibetan Mastiff\", \"French Bulldog\", \"Great Dane\", \"St. Bernard\", \"husky\", \"Alaskan Malamute\", \"Siberian Husky\", \"Dalmatian\", \"Affenpinscher\", \"Basenji\", \"pug\", \"Leonberger\", \"Newfoundland dog\", \"Great Pyrenees dog\", \"Samoyed\", \"Pomeranian\", \"Chow Chow\", \"Keeshond\", \"brussels griffon\", \"Pembroke Welsh Corgi\", \"Cardigan Welsh Corgi\", \"Toy Poodle\", \"Miniature Poodle\", \"Standard Poodle\", \"Mexican hairless dog (xoloitzcuintli)\", \"grey wolf\", \"Alaskan tundra wolf\", \"red wolf or maned wolf\", \"coyote\", \"dingo\", \"dhole\", \"African wild dog\", \"hyena\", \"red fox\", \"kit fox\", \"Arctic fox\", \"grey fox\", \"tabby cat\", \"tiger cat\", \"Persian cat\", \"Siamese cat\", \"Egyptian Mau\", \"cougar\", \"lynx\", \"leopard\", \"snow leopard\", \"jaguar\", \"lion\", \"tiger\", \"cheetah\", \"brown bear\", \"American black bear\", \"polar bear\", \"sloth bear\", \"mongoose\", \"meerkat\", \"tiger beetle\", \"ladybug\", \"ground beetle\", \"longhorn beetle\", \"leaf beetle\", \"dung beetle\", \"rhinoceros beetle\", \"weevil\", \"fly\", \"bee\", \"ant\", \"grasshopper\", \"cricket insect\", \"stick insect\", \"cockroach\", \"praying mantis\", \"cicada\", \"leafhopper\", \"lacewing\", \"dragonfly\", \"damselfly\", \"red admiral butterfly\", \"ringlet butterfly\", \"monarch butterfly\", \"small white butterfly\", \"sulphur butterfly\", \"gossamer-winged butterfly\", \"starfish\", \"sea urchin\", \"sea cucumber\", \"cottontail rabbit\", \"hare\", \"Angora rabbit\", \"hamster\", \"porcupine\", \"fox squirrel\", \"marmot\", \"beaver\", \"guinea pig\", \"common sorrel horse\", \"zebra\", \"pig\", \"wild boar\", \"warthog\", \"hippopotamus\", \"ox\", \"water buffalo\", \"bison\", \"ram (adult male sheep)\", \"bighorn sheep\", \"Alpine ibex\", \"hartebeest\", \"impala (antelope)\", \"gazelle\", \"arabian camel\", \"llama\", \"weasel\", \"mink\", \"European polecat\", \"black-footed ferret\", \"otter\", \"skunk\", \"badger\", \"armadillo\", \"three-toed sloth\", \"orangutan\", \"gorilla\", \"chimpanzee\", \"gibbon\", \"siamang\", \"guenon\", \"patas monkey\", \"baboon\", \"macaque\", \"langur\", \"black-and-white colobus\", \"proboscis monkey\", \"marmoset\", \"white-headed capuchin\", \"howler monkey\", \"titi monkey\", \"Geoffroy's spider monkey\", \"common squirrel monkey\", \"ring-tailed lemur\", \"indri\", \"Asian elephant\", \"African bush elephant\", \"red panda\", \"giant panda\", \"snoek fish\", \"eel\", \"silver salmon\", \"rock beauty fish\", \"clownfish\", \"sturgeon\", \"gar fish\", \"lionfish\", \"pufferfish\", \"abacus\", \"abaya\", \"academic gown\", \"accordion\", \"acoustic guitar\", \"aircraft carrier\", \"airliner\", \"airship\", \"altar\", \"ambulance\", \"amphibious vehicle\", \"analog clock\", \"apiary\", \"apron\", \"trash can\", \"assault rifle\", \"backpack\", \"bakery\", \"balance beam\", \"balloon\", \"ballpoint pen\", \"Band-Aid\", \"banjo\", \"baluster / handrail\", \"barbell\", \"barber chair\", \"barbershop\", \"barn\", \"barometer\", \"barrel\", \"wheelbarrow\", \"baseball\", \"basketball\", \"bassinet\", \"bassoon\", \"swimming cap\", \"bath towel\", \"bathtub\", \"station wagon\", \"lighthouse\", \"beaker\", \"military hat (bearskin or shako)\", \"beer bottle\", \"beer glass\", \"bell tower\", \"baby bib\", \"tandem bicycle\", \"bikini\", \"ring binder\", \"binoculars\", \"birdhouse\", \"boathouse\", \"bobsleigh\", \"bolo tie\", \"poke bonnet\", \"bookcase\", \"bookstore\", \"bottle cap\", \"hunting bow\", \"bow tie\", \"brass memorial plaque\", \"bra\", \"breakwater\", \"breastplate\", \"broom\", \"bucket\", \"buckle\", \"bulletproof vest\", \"high-speed train\", \"butcher shop\", \"taxicab\", \"cauldron\", \"candle\", \"cannon\", \"canoe\", \"can opener\", \"cardigan\", \"car mirror\", \"carousel\", \"tool kit\", \"cardboard box / carton\", \"car wheel\", \"automated teller machine\", \"cassette\", \"cassette player\", \"castle\", \"catamaran\", \"CD player\", \"cello\", \"mobile phone\", \"chain\", \"chain-link fence\", \"chain mail\", \"chainsaw\", \"storage chest\", \"chiffonier\", \"bell or wind chime\", \"china cabinet\", \"Christmas stocking\", \"church\", \"movie theater\", \"cleaver\", \"cliff dwelling\", \"cloak\", \"clogs\", \"cocktail shaker\", \"coffee mug\", \"coffeemaker\", \"spiral or coil\", \"combination lock\", \"computer keyboard\", \"candy store\", \"container ship\", \"convertible\", \"corkscrew\", \"cornet\", \"cowboy boot\", \"cowboy hat\", \"cradle\", \"construction crane\", \"crash helmet\", \"crate\", \"infant bed\", \"Crock Pot\", \"croquet ball\", \"crutch\", \"cuirass\", \"dam\", \"desk\", \"desktop computer\", \"rotary dial telephone\", \"diaper\", \"digital clock\", \"digital watch\", \"dining table\", \"dishcloth\", \"dishwasher\", \"disc brake\", \"dock\", \"dog sled\", \"dome\", \"doormat\", \"drilling rig\", \"drum\", \"drumstick\", \"dumbbell\", \"Dutch oven\", \"electric fan\", \"electric guitar\", \"electric locomotive\", \"entertainment center\", \"envelope\", \"espresso machine\", \"face powder\", \"feather boa\", \"filing cabinet\", \"fireboat\", \"fire truck\", \"fire screen\", \"flagpole\", \"flute\", \"folding chair\", \"football helmet\", \"forklift\", \"fountain\", \"fountain pen\", \"four-poster bed\", \"freight car\", \"French horn\", \"frying pan\", \"fur coat\", \"garbage truck\", \"gas mask or respirator\", \"gas pump\", \"goblet\", \"go-kart\", \"golf ball\", \"golf cart\", \"gondola\", \"gong\", \"gown\", \"grand piano\", \"greenhouse\", \"radiator grille\", \"grocery store\", \"guillotine\", \"hair clip\", \"hair spray\", \"half-track\", \"hammer\", \"hamper\", \"hair dryer\", \"hand-held computer\", \"handkerchief\", \"hard disk drive\", \"harmonica\", \"harp\", \"combine harvester\", \"hatchet\", \"holster\", \"home theater\", \"honeycomb\", \"hook\", \"hoop skirt\", \"gymnastic horizontal bar\", \"horse-drawn vehicle\", \"hourglass\", \"iPod\", \"clothes iron\", \"carved pumpkin\", \"jeans\", \"jeep\", \"T-shirt\", \"jigsaw puzzle\", \"rickshaw\", \"joystick\", \"kimono\", \"knee pad\", \"knot\", \"lab coat\", \"ladle\", \"lampshade\", \"laptop computer\", \"lawn mower\", \"lens cap\", \"letter opener\", \"library\", \"lifeboat\", \"lighter\", \"limousine\", \"ocean liner\", \"lipstick\", \"slip-on shoe\", \"lotion\", \"music speaker\", \"loupe magnifying glass\", \"sawmill\", \"magnetic compass\", \"messenger bag\", \"mailbox\", \"tights\", \"one-piece bathing suit\", \"manhole cover\", \"maraca\", \"marimba\", \"mask\", \"matchstick\", \"maypole\", \"maze\", \"measuring cup\", \"medicine cabinet\", \"megalith\", \"microphone\", \"microwave oven\", \"military uniform\", \"milk can\", \"minibus\", \"miniskirt\", \"minivan\", \"missile\", \"mitten\", \"mixing bowl\", \"mobile home\", \"ford model t\", \"modem\", \"monastery\", \"monitor\", \"moped\", \"mortar and pestle\", \"graduation cap\", \"mosque\", \"mosquito net\", \"vespa\", \"mountain bike\", \"tent\", \"computer mouse\", \"mousetrap\", \"moving van\", \"muzzle\", \"metal nail\", \"neck brace\", \"necklace\", \"baby pacifier\", \"notebook computer\", \"obelisk\", \"oboe\", \"ocarina\", \"odometer\", \"oil filter\", \"pipe organ\", \"oscilloscope\", \"overskirt\", \"bullock cart\", \"oxygen mask\", \"product packet / packaging\", \"paddle\", \"paddle wheel\", \"padlock\", \"paintbrush\", \"pajamas\", \"palace\", \"pan flute\", \"paper towel\", \"parachute\", \"parallel bars\", \"park bench\", \"parking meter\", \"railroad car\", \"patio\", \"payphone\", \"pedestal\", \"pencil case\", \"pencil sharpener\", \"perfume\", \"Petri dish\", \"photocopier\", \"plectrum\", \"Pickelhaube\", \"picket fence\", \"pickup truck\", \"pier\", \"piggy bank\", \"pill bottle\", \"pillow\", \"ping-pong ball\", \"pinwheel\", \"pirate ship\", \"drink pitcher\", \"block plane\", \"planetarium\", \"plastic bag\", \"plate rack\", \"farm plow\", \"plunger\", \"Polaroid camera\", \"pole\", \"police van\", \"poncho\", \"pool table\", \"soda bottle\", \"plant pot\", \"potter's wheel\", \"power drill\", \"prayer rug\", \"printer\", \"prison\", \"missile\", \"projector\", \"hockey puck\", \"punching bag\", \"purse\", \"quill\", \"quilt\", \"race car\", \"racket\", \"radiator\", \"radio\", \"radio telescope\", \"rain barrel\", \"recreational vehicle\", \"fishing casting reel\", \"reflex camera\", \"refrigerator\", \"remote control\", \"restaurant\", \"revolver\", \"rifle\", \"rocking chair\", \"rotisserie\", \"eraser\", \"rugby ball\", \"ruler measuring stick\", \"sneaker\", \"safe\", \"safety pin\", \"salt shaker\", \"sandal\", \"sarong\", \"saxophone\", \"scabbard\", \"weighing scale\", \"school bus\", \"schooner\", \"scoreboard\", \"CRT monitor\", \"screw\", \"screwdriver\", \"seat belt\", \"sewing machine\", \"shield\", \"shoe store\", \"shoji screen / room divider\", \"shopping basket\", \"shopping cart\", \"shovel\", \"shower cap\", \"shower curtain\", \"ski\", \"balaclava ski mask\", \"sleeping bag\", \"slide rule\", \"sliding door\", \"slot machine\", \"snorkel\", \"snowmobile\", \"snowplow\", \"soap dispenser\", \"soccer ball\", \"sock\", \"solar thermal collector\", \"sombrero\", \"soup bowl\", \"keyboard space bar\", \"space heater\", \"space shuttle\", \"spatula\", \"motorboat\", \"spider web\", \"spindle\", \"sports car\", \"spotlight\", \"stage\", \"steam locomotive\", \"through arch bridge\", \"steel drum\", \"stethoscope\", \"scarf\", \"stone wall\", \"stopwatch\", \"stove\", \"strainer\", \"tram\", \"stretcher\", \"couch\", \"stupa\", \"submarine\", \"suit\", \"sundial\", \"sunglasses\", \"sunglasses\", \"sunscreen\", \"suspension bridge\", \"mop\", \"sweatshirt\", \"swim trunks / shorts\", \"swing\", \"electrical switch\", \"syringe\", \"table lamp\", \"tank\", \"tape player\", \"teapot\", \"teddy bear\", \"television\", \"tennis ball\", \"thatched roof\", \"front curtain\", \"thimble\", \"threshing machine\", \"throne\", \"tile roof\", \"toaster\", \"tobacco shop\", \"toilet seat\", \"torch\", \"totem pole\", \"tow truck\", \"toy store\", \"tractor\", \"semi-trailer truck\", \"tray\", \"trench coat\", \"tricycle\", \"trimaran\", \"tripod\", \"triumphal arch\", \"trolleybus\", \"trombone\", \"hot tub\", \"turnstile\", \"typewriter keyboard\", \"umbrella\", \"unicycle\", \"upright piano\", \"vacuum cleaner\", \"vase\", \"vaulted or arched ceiling\", \"velvet fabric\", \"vending machine\", \"vestment\", \"viaduct\", \"violin\", \"volleyball\", \"waffle iron\", \"wall clock\", \"wallet\", \"wardrobe\", \"military aircraft\", \"sink\", \"washing machine\", \"water bottle\", \"water jug\", \"water tower\", \"whiskey jug\", \"whistle\", \"hair wig\", \"window screen\", \"window shade\", \"Windsor tie\", \"wine bottle\", \"airplane wing\", \"wok\", \"wooden spoon\", \"wool\", \"split-rail fence\", \"shipwreck\", \"sailboat\", \"yurt\", \"website\", \"comic book\", \"crossword\", \"traffic or street sign\", \"traffic light\", \"dust jacket\", \"menu\", \"plate\", \"guacamole\", \"consomme\", \"hot pot\", \"trifle\", \"ice cream\", \"popsicle\", \"baguette\", \"bagel\", \"pretzel\", \"cheeseburger\", \"hot dog\", \"mashed potatoes\", \"cabbage\", \"broccoli\", \"cauliflower\", \"zucchini\", \"spaghetti squash\", \"acorn squash\", \"butternut squash\", \"cucumber\", \"artichoke\", \"bell pepper\", \"cardoon\", \"mushroom\", \"Granny Smith apple\", \"strawberry\", \"orange\", \"lemon\", \"fig\", \"pineapple\", \"banana\", \"jackfruit\", \"cherimoya (custard apple)\", \"pomegranate\", \"hay\", \"carbonara\", \"chocolate syrup\", \"dough\", \"meatloaf\", \"pizza\", \"pot pie\", \"burrito\", \"red wine\", \"espresso\", \"tea cup\", \"eggnog\", \"mountain\", \"bubble\", \"cliff\", \"coral reef\", \"geyser\", \"lakeshore\", \"promontory\", \"sandbar\", \"beach\", \"valley\", \"volcano\", \"baseball player\", \"bridegroom\", \"scuba diver\", \"rapeseed\", \"daisy\", \"yellow lady's slipper\", \"corn\", \"acorn\", \"rose hip\", \"horse chestnut seed\", \"coral fungus\", \"agaric\", \"gyromitra\", \"stinkhorn mushroom\", \"earth star fungus\", \"hen of the woods mushroom\", \"bolete\", \"corn cob\", \"toilet paper\"]"
],
"execution_count": 6,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "eMQSCuBta2G6"
},
"source": [
"A subset of these class names are modified from the default ImageNet class names sourced from Anish Athalye's imagenet-simple-labels.\n",
"\n",
"These edits were made via trial and error and concentrated on the lowest performing classes according to top_1 and top_5 accuracy on the ImageNet training set for the RN50, RN101, and RN50x4 models. These tweaks improve top_1 by 1.5% on ViT-B/32 over using the default class names. Alec got bored somewhere along the way as gains started to diminish and never finished updating / tweaking the list. He also didn't revisit this with the better performing RN50x16, RN50x64, or any of the ViT models. He thinks it's likely another 0.5% to 1% top_1 could be gained from further work here. It'd be interesting to more rigorously study / understand this.\n",
"\n",
"Some examples beyond the crane/crane -> construction crane / bird crane issue mentioned in Section 3.1.4 of the paper include:\n",
"\n",
"- CLIP interprets \"nail\" as \"fingernail\" so we changed the label to \"metal nail\".\n",
"- ImageNet kite class refers to the bird of prey, not the flying toy, so we changed \"kite\" to \"kite (bird of prey)\"\n",
"- The ImageNet class for red wolf seems to include a lot of mislabeled maned wolfs so we changed \"red wolf\" to \"red wolf or maned wolf\""
]
},
{
"cell_type": "code",
"metadata": {
"id": "toGtcd-Ji_MD",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "b6eb0753-2bee-4144-abe3-fbd23f35f555"
},
"source": [
"imagenet_templates = [\n",
" 'a bad photo of a {}.',\n",
" 'a photo of many {}.',\n",
" 'a sculpture of a {}.',\n",
" 'a photo of the hard to see {}.',\n",
" 'a low resolution photo of the {}.',\n",
" 'a rendering of a {}.',\n",
" 'graffiti of a {}.',\n",
" 'a bad photo of the {}.',\n",
" 'a cropped photo of the {}.',\n",
" 'a tattoo of a {}.',\n",
" 'the embroidered {}.',\n",
" 'a photo of a hard to see {}.',\n",
" 'a bright photo of a {}.',\n",
" 'a photo of a clean {}.',\n",
" 'a photo of a dirty {}.',\n",
" 'a dark photo of the {}.',\n",
" 'a drawing of a {}.',\n",
" 'a photo of my {}.',\n",
" 'the plastic {}.',\n",
" 'a photo of the cool {}.',\n",
" 'a close-up photo of a {}.',\n",
" 'a black and white photo of the {}.',\n",
" 'a painting of the {}.',\n",
" 'a painting of a {}.',\n",
" 'a pixelated photo of the {}.',\n",
" 'a sculpture of the {}.',\n",
" 'a bright photo of the {}.',\n",
" 'a cropped photo of a {}.',\n",
" 'a plastic {}.',\n",
" 'a photo of the dirty {}.',\n",
" 'a jpeg corrupted photo of a {}.',\n",
" 'a blurry photo of the {}.',\n",
" 'a photo of the {}.',\n",
" 'a good photo of the {}.',\n",
" 'a rendering of the {}.',\n",
" 'a {} in a video game.',\n",
" 'a photo of one {}.',\n",
" 'a doodle of a {}.',\n",
" 'a close-up photo of the {}.',\n",
" 'a photo of a {}.',\n",
" 'the origami {}.',\n",
" 'the {} in a video game.',\n",
" 'a sketch of a {}.',\n",
" 'a doodle of the {}.',\n",
" 'a origami {}.',\n",
" 'a low resolution photo of a {}.',\n",
" 'the toy {}.',\n",
" 'a rendition of the {}.',\n",
" 'a photo of the clean {}.',\n",
" 'a photo of a large {}.',\n",
" 'a rendition of a {}.',\n",
" 'a photo of a nice {}.',\n",
" 'a photo of a weird {}.',\n",
" 'a blurry photo of a {}.',\n",
" 'a cartoon {}.',\n",
" 'art of a {}.',\n",
" 'a sketch of the {}.',\n",
" 'a embroidered {}.',\n",
" 'a pixelated photo of a {}.',\n",
" 'itap of the {}.',\n",
" 'a jpeg corrupted photo of the {}.',\n",
" 'a good photo of a {}.',\n",
" 'a plushie {}.',\n",
" 'a photo of the nice {}.',\n",
" 'a photo of the small {}.',\n",
" 'a photo of the weird {}.',\n",
" 'the cartoon {}.',\n",
" 'art of the {}.',\n",
" 'a drawing of the {}.',\n",
" 'a photo of the large {}.',\n",
" 'a black and white photo of a {}.',\n",
" 'the plushie {}.',\n",
" 'a dark photo of a {}.',\n",
" 'itap of a {}.',\n",
" 'graffiti of the {}.',\n",
" 'a toy {}.',\n",
" 'itap of my {}.',\n",
" 'a photo of a cool {}.',\n",
" 'a photo of a small {}.',\n",
" 'a tattoo of the {}.',\n",
"]\n",
"\n",
"print(f\"{len(imagenet_classes)} classes, {len(imagenet_templates)} templates\")"
],
"execution_count": 7,
"outputs": [
{
"output_type": "stream",
"text": [
"1000 classes, 80 templates\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "aRB5OzgpHwqQ"
},
"source": [
"A similar, intuition-guided trial and error based on the ImageNet training set was used for templates. This list is pretty haphazard and was gradually made / expanded over the course of about a year of the project and was revisited / tweaked every few months. A surprising / weird thing was adding templates intended to help ImageNet-R performance (specifying different possible renditions of an object) improved standard ImageNet accuracy too.\n",
"\n",
"After the 80 templates were \"locked\" for the paper, we ran sequential forward selection over the list of 80 templates. The search terminated after ensembling 7 templates and selected them in the order below.\n",
"\n",
"1. itap of a {}.\n",
"2. a bad photo of the {}.\n",
"3. a origami {}.\n",
"4. a photo of the large {}.\n",
"5. a {} in a video game.\n",
"6. art of the {}.\n",
"7. a photo of the small {}.\n",
"\n",
"Speculating, we think it's interesting to see different scales (large and small), a difficult view (a bad photo), and \"abstract\" versions (origami, video game, art), were all selected for, but we haven't studied this in any detail. This subset performs a bit better than the full 80 ensemble reported in the paper, especially for the smaller models."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "4W8ARJVqBJXs"
},
"source": [
"# Loading the Images\n",
"\n",
"The ILSVRC2012 datasets are no longer available for download publicly. We instead download the ImageNet-V2 dataset by [Recht et al.](https://arxiv.org/abs/1902.10811).\n",
"\n",
"If you have the ImageNet dataset downloaded, you can replace the dataset with the official torchvision loader, e.g.:\n",
"\n",
"```python\n",
"images = torchvision.datasets.ImageNet(\"path/to/imagenet\", split='val', transform=preprocess)\n",
"```"
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "moHR4UlHKsDc",
"outputId": "40731297-edc7-4cd0-be75-ed426c8fb005"
},
"source": [
"! pip install git+https://github.com/modestyachts/ImageNetV2_pytorch\n",
"\n",
"from imagenetv2_pytorch import ImageNetV2Dataset\n",
"\n",
"images = ImageNetV2Dataset(transform=preprocess)\n",
"loader = torch.utils.data.DataLoader(images, batch_size=32, num_workers=2)"
],
"execution_count": 8,
"outputs": [
{
"output_type": "stream",
"text": [
"Collecting git+https://github.com/modestyachts/ImageNetV2_pytorch\n",
" Cloning https://github.com/modestyachts/ImageNetV2_pytorch to /tmp/pip-req-build-0kih0kn2\n",
" Running command git clone -q https://github.com/modestyachts/ImageNetV2_pytorch /tmp/pip-req-build-0kih0kn2\n",
"Building wheels for collected packages: imagenetv2-pytorch\n",
" Building wheel for imagenetv2-pytorch (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
" Created wheel for imagenetv2-pytorch: filename=imagenetv2_pytorch-0.1-py3-none-any.whl size=2663 sha256=ac31e0ed9c61afc5e0271eed315d3a82844a79ae64f8ce43fc1c98928cec129f\n",
" Stored in directory: /tmp/pip-ephem-wheel-cache-745b5n1m/wheels/ab/ee/f4/73bce5c7f68d28ce632ef33ae87ce60aaca021eb2b3b31a6fa\n",
"Successfully built imagenetv2-pytorch\n",
"Installing collected packages: imagenetv2-pytorch\n",
"Successfully installed imagenetv2-pytorch-0.1\n",
"Dataset matched-frequency not found on disk, downloading....\n"
],
"name": "stdout"
},
{
"output_type": "stream",
"text": [
"100%|ββββββββββ| 1.26G/1.26G [01:02<00:00, 20.2MiB/s]\n"
],
"name": "stderr"
},
{
"output_type": "stream",
"text": [
"Extracting....\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "fz6D-F-Wbrtp"
},
"source": [
"# Creating zero-shot classifier weights"
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 67,
"referenced_widgets": [
"66a1639713ae441d8a9b873381f9d774",
"610b775178c645e2b4663b77cc0c67b6",
"412dd15f0d8542f5ab2730f8616fb582",
"5e6315f36b4e4eeea5c6294b024e0c97",
"085d5388abda4202bfa66d0c088452f8",
"f75124b64aa147c693c67a78f8e3a231",
"6e5676a054874243b55fc6d120a07d01",
"dc6d1416c01a4047935ee15c3fd2eb1c"
]
},
"id": "sRqDoz1Gbsii",
"outputId": "312b8ebf-3961-4903-d8cb-3b7a94cc97b6"
},
"source": [
"def zeroshot_classifier(classnames, templates):\n",
" with torch.no_grad():\n",
" zeroshot_weights = []\n",
" for classname in tqdm(classnames):\n",
" texts = [template.format(classname) for template in templates] #format with class\n",
" texts = clip.tokenize(texts).cuda() #tokenize\n",
" class_embeddings = model.encode_text(texts) #embed with text encoder\n",
" class_embeddings /= class_embeddings.norm(dim=-1, keepdim=True)\n",
" class_embedding = class_embeddings.mean(dim=0)\n",
" class_embedding /= class_embedding.norm()\n",
" zeroshot_weights.append(class_embedding)\n",
" zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda()\n",
" return zeroshot_weights\n",
"\n",
"\n",
"zeroshot_weights = zeroshot_classifier(imagenet_classes, imagenet_templates)"
],
"execution_count": 9,
"outputs": [
{
"output_type": "display_data",
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "66a1639713ae441d8a9b873381f9d774",
"version_minor": 0,
"version_major": 2
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, max=1000.0), HTML(value='')))"
]
},
"metadata": {
"tags": []
}
},
{
"output_type": "stream",
"text": [
"\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "1fZo7hG8iJP5"
},
"source": [
"# Zero-shot prediction"
]
},
{
"cell_type": "code",
"metadata": {
"id": "j4kPSZoShQxN"
},
"source": [
"def accuracy(output, target, topk=(1,)):\n",
" pred = output.topk(max(topk), 1, True, True)[1].t()\n",
" correct = pred.eq(target.view(1, -1).expand_as(pred))\n",
" return [float(correct[:k].reshape(-1).float().sum(0, keepdim=True).cpu().numpy()) for k in topk]"
],
"execution_count": 10,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 102,
"referenced_widgets": [
"84f80a7f3e764346969a347b0f71b24e",
"392656f01b2945f3bd7903783ed8cc96",
"8e47a435519b4ce090879b4be2f61f99",
"41b1ed6b0a9745c1a595377670b15ff4",
"179b8ae1eb7f4a828f953e889b141725",
"d8708e8414fd44f4abd6590c9b57996f",
"800e30f5b4f24475a2b0046da0703631",
"8764308b948745f1a677332fd21fcaf0"
]
},
"id": "wKJ7YsdlkDXo",
"outputId": "ab824854-38e4-4d37-ad40-2a7ce3c5fd43"
},
"source": [
"with torch.no_grad():\n",
" top1, top5, n = 0., 0., 0.\n",
" for i, (images, target) in enumerate(tqdm(loader)):\n",
" images = images.cuda()\n",
" target = target.cuda()\n",
" \n",
" # predict\n",
" image_features = model.encode_image(images)\n",
" image_features /= image_features.norm(dim=-1, keepdim=True)\n",
" logits = 100. * image_features @ zeroshot_weights\n",
"\n",
" # measure accuracy\n",
" acc1, acc5 = accuracy(logits, target, topk=(1, 5))\n",
" top1 += acc1\n",
" top5 += acc5\n",
" n += images.size(0)\n",
"\n",
"top1 = (top1 / n) * 100\n",
"top5 = (top5 / n) * 100 \n",
"\n",
"print(f\"Top-1 accuracy: {top1:.2f}\")\n",
"print(f\"Top-5 accuracy: {top5:.2f}\")"
],
"execution_count": 11,
"outputs": [
{
"output_type": "display_data",
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "84f80a7f3e764346969a347b0f71b24e",
"version_minor": 0,
"version_major": 2
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, max=313.0), HTML(value='')))"
]
},
"metadata": {
"tags": []
}
},
{
"output_type": "stream",
"text": [
"\n",
"Top-1 accuracy: 55.93\n",
"Top-5 accuracy: 83.36\n"
],
"name": "stdout"
}
]
}
]
} |