semabs-relevancy / CLIP /tests /test_consistency.py
huy-ha's picture
relevancy extractor
8fbac9e
raw
history blame
812 Bytes
import numpy as np
import pytest
import torch
from PIL import Image
import clip
@pytest.mark.parametrize("model_name", clip.available_models())
def test_consistency(model_name):
device = "cpu"
jit_model, transform = clip.load(model_name, device=device, jit=True)
py_model, _ = clip.load(model_name, device=device, jit=False)
image = transform(Image.open("CLIP.png")).unsqueeze(0).to(device)
text = clip.tokenize(["a diagram", "a dog", "a cat"]).to(device)
with torch.no_grad():
logits_per_image, _ = jit_model(image, text)
jit_probs = logits_per_image.softmax(dim=-1).cpu().numpy()
logits_per_image, _ = py_model(image, text)
py_probs = logits_per_image.softmax(dim=-1).cpu().numpy()
assert np.allclose(jit_probs, py_probs, atol=0.01, rtol=0.1)