File size: 13,563 Bytes
a17aefb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
from svitt.utils import (
    interpolate_pos_embed,
    interpolate_pos_relative_bias_beit_3d,
)
from omegaconf import OmegaConf
from transformers import ViTModel, ViTConfig
from svitt.sparse_config import BertConfig, BeitConfig
from svitt.sparse_xbeit import BeitModel
from svitt.sparse_xbert import BertModel, BertForMaskedLM

import torch
from torch import nn
import torch.nn.functional as F


class SViTT(nn.Module):
    """Common utils shared by pretraining and downstream retrieval"""
    def __init__(self, config=None, tokenizer=None, pretrain=True, **kwargs):
        super().__init__()
        self.config = config
        self.tokenizer = tokenizer
        self.embed_dim = config.embed_dim
        self.vision_width = 768
        self.text_width = 768
        self.pretrain = pretrain

        self.vision_encoder, self.vision_layernorm = self.build_vision_encoder()
        self.text_encoder = self.build_text_encoder()

        self.vision_proj = nn.Linear(self.vision_width, self.embed_dim)
        self.text_proj = nn.Linear(self.text_width, self.embed_dim)

        self.temp = nn.Parameter(torch.ones([]) * config.temp)
        self.itm_head = nn.Linear(self.text_width, 2)


    def build_text_encoder(self):

        bert_config = BertConfig.from_json_file(self.config.bert_config)

        # Override params for sparse vision encoder
        model_args = getattr(self.config, 'text_encoder_args', {})
        if model_args:
            model_args = OmegaConf.to_object(model_args)
            bert_config.update(model_args)

        if self.pretrain:
            text_encoder, _ = BertForMaskedLM.from_pretrained(
                self.config.text_encoder, config=bert_config,
                output_loading_info=True
            )
        else:
            text_encoder, _ = BertModel.from_pretrained(
                self.config.text_encoder, config=bert_config,
                add_pooling_layer=False, output_loading_info=True
            )
        return text_encoder

    def build_vision_encoder(self):
        # if self.config.vit_type in ["beit", "deit", "vit", "vit32"]:
        if self.config.vit_type in ["beit"]:
            vision_encoder = self.build_huggingface_vit_with_image_size(
                self.config.vit_name_or_pretrained_path, self.config.image_res,)
        else:
            raise ValueError(f"Unknown vit type {self.config.vit_type}")

        # add layernorm for normalizing BEiT outputs hidden states
        vision_layernorm = None
        if self.config.vit_type == "beit":
            vision_layernorm = nn.LayerNorm(self.vision_width, eps=1e-12)
        return vision_encoder, vision_layernorm

    # @classmethod
    # def build_huggingface_vit_with_image_size(cls, model_card: str, image_size: int):
    def build_huggingface_vit_with_image_size(self, model_card: str, image_size: int):
        """Build a vit model from huggingface hub, also interpolate pos_embed when needed.

        Args:
            model_card: name in huggingface hub, e.g., `facebook/deit-base-patch16-224`
            image_size: new image size, may be different from pre-training image_size of `model_card`

        ref: https://github.com/huggingface/transformers/issues/12167#issuecomment-861356232
        """
        is_beit = "beit" in model_card
        if "beit" in model_card:
            model_cls, config_cls = BeitModel, BeitConfig
        elif "deit" in model_card or "vit" in model_card:
            # the deit model we use is loaded in vit arch,
            # see https://huggingface.co/facebook/deit-base-patch16-224#how-to-use
            model_cls, config_cls = ViTModel, ViTConfig
        else:
            raise ValueError(f"Unexpected model_card: {model_card}")

        # BEiT uses average pooled tokens instead of [CLS] used by other models
        tmp_model = model_cls.from_pretrained(model_card, add_pooling_layer=is_beit)
        state_dict = tmp_model.state_dict()
        del tmp_model

        # Override params for sparse vision encoder
        model_args = getattr(self.config, 'vision_encoder_args', {})
        if model_args:
            model_args = OmegaConf.to_object(model_args)
        model_config = config_cls.from_pretrained(
            model_card, 
            image_size=image_size, 
            **model_args,
        )
        model = model_cls(config=model_config, add_pooling_layer=is_beit, num_frames=self.config.video_input.num_frames)
        if is_beit:
            # interpolate relative pos bias
            state_dict = interpolate_pos_relative_bias_beit_3d(
                state_dict_old=state_dict,
                state_dict_new=model.state_dict(),
                patch_shape_new=model.window_size
            )
        else:
            # interpolate pos_embed and load weights to new model
            state_dict["embeddings.position_embeddings"] = interpolate_pos_embed(
                pos_embed_old=state_dict["embeddings.position_embeddings"],
                pos_embed_new=model.embeddings.position_embeddings,
                num_patches_new=model.embeddings.patch_embeddings.num_patches
            )
        msg = model.load_state_dict(state_dict, strict=False)
        return model

    def get_text_encoder(self):
        """get text encoder, used for text and cross-modal encoding"""
        encoder = self.text_encoder
        return encoder.bert if hasattr(encoder, "bert") else encoder

    def encode_image(self, video, output_token_idx=False, output_attentions=False):
        video_embeds = self.vision_encoder(video, output_token_idx=output_token_idx, output_attentions=output_attentions)  # (bsz, seq_len, d)
        if self.vision_layernorm is not None:  # only for BEiT mean-pooling
            video_embeds.last_hidden_state = self.vision_layernorm(video_embeds.last_hidden_state)
        if output_token_idx:
            token_idx = video_embeds.token_idx
        
        if output_attentions:
            attentions = video_embeds.attentions
            
        if self.config.vit_type == "beit":
            pooled_video_embeds = video_embeds.pooler_output  # (bsz*num_frms, d)
            video_embeds = video_embeds.last_hidden_state  # (bsz*num_frms, L, d)
        else:
            video_embeds = video_embeds.last_hidden_state
            pooled_video_embeds = video_embeds[:, 0]
        
        outputs = (video_embeds, pooled_video_embeds)

        if output_token_idx:
            outputs += (token_idx,)
        
        if output_attentions:
            outputs += (attentions,)

        return outputs

    def _encode_image(self, image):
        bsz, num_frms, c, h, w = image.shape  # `num_frms` could be changing for image (=1) or video (e.g., =4)
        image = image.view(bsz*num_frms, c, h, w)
        image_embeds = self.vision_encoder(image)
        if self.vision_layernorm is not None:  # only for BEiT mean-pooling
            image_embeds.last_hidden_state = self.vision_layernorm(image_embeds.last_hidden_state)

        if self.config.vit_type == "beit":
            pooled_image_embeds = image_embeds.pooler_output  # (bsz*num_frms, d)
            image_embeds = image_embeds.last_hidden_state  # (bsz*num_frms, L, d)
        else:
            image_embeds = image_embeds.last_hidden_state
            pooled_image_embeds = image_embeds[:, 0]

        image_embeds = image_embeds.view(bsz, num_frms, -1, self.vision_width)  # (bsz, num_frms, L, d)
        pooled_image_embeds = pooled_image_embeds.view(bsz, num_frms, self.vision_width) \
            if pooled_image_embeds is not None else None  # (bsz, num_frms, d)
        return image_embeds, pooled_image_embeds

    def encode_text(self, text):
        text_output = self.get_text_encoder()(
            text.input_ids,
            attention_mask=text.attention_mask,
            return_dict=True,
            mode='text'
        )
        text_embeds = text_output.last_hidden_state 
        pooled_text_embeds = text_embeds[:, 0] 
        return text_embeds, pooled_text_embeds

    @torch.no_grad()
    def clip_contrastive_temperature(self, min_val=0.001, max_val=0.5):
        """Seems only used during pre-training"""
        self.temp.clamp_(min_val, max_val)

    @torch.no_grad()
    def get_mask(self, sim, idx=None, normalize=False):
        """
        sim: (N, N)
        idx: (N, )
        normalize: bool, make row sum equal to 1
        """
        if idx is not None:
            idx = idx.view(-1, 1)
            mask = torch.eq(idx, idx.T).to(sim.dtype)
            if normalize:  
                mask = mask / mask.sum(1, keepdim=True)
        else:
            mask = torch.zeros_like(sim)
            mask.fill_diagonal_(1)
        return mask  # `1` mark valid/matched location

    def get_contrastive_loss(self, pooled_image_embeds, pooled_text_embeds, idx=None):
        sim_i2t, sim_t2i = self.get_sim(
            pooled_image_embeds, pooled_text_embeds, t=self.temp)

        with torch.no_grad():
            sim_i2t_targets = self.get_mask(sim_i2t, idx=idx, normalize=True)
            sim_t2i_targets = sim_i2t_targets

        loss_i2t = -torch.sum(
            F.log_softmax(sim_i2t, dim=1) * sim_i2t_targets, dim=1).mean()
        loss_t2i = -torch.sum(
            F.log_softmax(sim_t2i, dim=1) * sim_t2i_targets, dim=1).mean()

        loss_ita = (loss_i2t + loss_t2i) / 2
        return loss_ita, sim_i2t, sim_t2i

    def get_sim(self, pooled_image_embeds, pooled_text_embeds, t=1):
        """
        Args:
            pooled_image_embeds: (bsz, num_frms, d)
            pooled_text_embeds: (bsz, d)
            t: temperature
        """
        image_proj = self.vision_proj
        text_proj = self.text_proj

        image_feat = F.normalize(image_proj(pooled_image_embeds), dim=-1)
        text_feat = F.normalize(text_proj(pooled_text_embeds), dim=-1)

        if image_feat.ndim == 3:
            sim_i2t = torch.einsum("mld,nd->mln", image_feat, text_feat).mean(1) / t  # (N, N)
        else:
            sim_i2t = torch.einsum("md,nd ->mn", image_feat, text_feat) / t  # (N, N)
        sim_t2i = sim_i2t.T
        return sim_i2t, sim_t2i

    def get_itm_loss(self, 
            sim_i2t, 
            sim_t2i, 
            text_embeds, 
            text_atts, 
            image_embeds, 
            image_atts, 
            idx=None,
        ):
        """
        sim_i2t, sim_t2i: (N, N)
        text_embeds, text_atts, image_embeds, image_atts: (N, *)
        idx: (N, )
        """
        bsz = len(sim_i2t)

        with torch.no_grad():
            weights_i2t = F.softmax(sim_i2t+1e-4, dim=1)  # (N, N)
            weights_t2i = F.softmax(sim_t2i+1e-4, dim=1)

            mask = self.get_mask(sim_i2t, idx=idx).bool()
            weights_i2t.masked_fill_(mask, 0)
            weights_t2i.masked_fill_(mask, 0)

        # select a negative image for each text
        if self.config.itm_hard_neg:
            img_neg_indices = torch.multinomial(weights_t2i, 1).squeeze() #RuntimeError: invalid multinomial distribution (sum of probabilities <= 0) 
        else:
            img_neg_indices = self.get_rand_indices(mask, 1).squeeze()            

        image_embeds_neg = image_embeds[img_neg_indices]

        # select a negative text for each image
        if self.config.itm_hard_neg:
            txt_neg_indices = torch.multinomial(weights_i2t, 1).squeeze()
        else:
            txt_neg_indices = self.get_rand_indices(mask, 1).squeeze()

        text_embeds_neg = text_embeds[txt_neg_indices]
        text_atts_neg = text_atts[txt_neg_indices]  # (N, L, d)

        # embedding on local gpu
        _text_embeds = text_embeds  
        _text_atts = text_atts
        _image_embeds = image_embeds
        _image_atts = image_atts
        # concat embeddings
        text_embeds_all = torch.cat([_text_embeds, _text_embeds, text_embeds_neg], dim=0)
        text_atts_all = torch.cat([_text_atts, _text_atts, text_atts_neg], dim=0)
        image_embeds_all = torch.cat([_image_embeds, image_embeds_neg, _image_embeds], dim=0)
        image_atts_all = torch.cat([_image_atts, _image_atts, _image_atts], dim=0)

        text_encoder = self.get_text_encoder()
        output = text_encoder(
            encoder_embeds=text_embeds_all,
            attention_mask=text_atts_all,
            encoder_hidden_states=image_embeds_all,
            encoder_attention_mask=image_atts_all,
            return_dict=True,
            mode='fusion',
        )

        itm_embeds = output.last_hidden_state[:, 0]  # pos (N, d) + neg (2N, d)

        loss_itm = self._get_itm_loss(itm_embeds, enc=self.itm_head)
        itm_embeds_pos = itm_embeds[:bsz]  # (N, d)

        return loss_itm, itm_embeds_pos

    def _get_itm_loss(self, itm_embeds, enc):
        """
        itm_embeds: (3*N, D)
        enc: nn.Module that projects cls_embeds
        """
        itm_scores = enc(itm_embeds)  # (3*N, 2)
        bs = itm_scores.size(0) // 3
        itm_labels = itm_scores.new_ones(3*bs, dtype=torch.long)
        itm_labels[bs:] = 0
        loss_itm = F.cross_entropy(itm_scores, itm_labels)
        return loss_itm

    def get_rand_indices(self, mask, k):
        """
        Args:
            mask: (N, L) 0 indicates the positions that we can sample, 1 otherwise
            k: #indices to sample at each row
        Returns:
            (N, k) indices
        """
        mask = mask.float()
        mask = mask - 10000 * mask
        mask += torch.randn_like(mask)
        _, indices = torch.sort(mask, dim=1, descending=True)
        indices = indices[:, :k].contiguous()  
        return indices