Spaces:
Runtime error
Runtime error
File size: 13,563 Bytes
a17aefb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
from svitt.utils import (
interpolate_pos_embed,
interpolate_pos_relative_bias_beit_3d,
)
from omegaconf import OmegaConf
from transformers import ViTModel, ViTConfig
from svitt.sparse_config import BertConfig, BeitConfig
from svitt.sparse_xbeit import BeitModel
from svitt.sparse_xbert import BertModel, BertForMaskedLM
import torch
from torch import nn
import torch.nn.functional as F
class SViTT(nn.Module):
"""Common utils shared by pretraining and downstream retrieval"""
def __init__(self, config=None, tokenizer=None, pretrain=True, **kwargs):
super().__init__()
self.config = config
self.tokenizer = tokenizer
self.embed_dim = config.embed_dim
self.vision_width = 768
self.text_width = 768
self.pretrain = pretrain
self.vision_encoder, self.vision_layernorm = self.build_vision_encoder()
self.text_encoder = self.build_text_encoder()
self.vision_proj = nn.Linear(self.vision_width, self.embed_dim)
self.text_proj = nn.Linear(self.text_width, self.embed_dim)
self.temp = nn.Parameter(torch.ones([]) * config.temp)
self.itm_head = nn.Linear(self.text_width, 2)
def build_text_encoder(self):
bert_config = BertConfig.from_json_file(self.config.bert_config)
# Override params for sparse vision encoder
model_args = getattr(self.config, 'text_encoder_args', {})
if model_args:
model_args = OmegaConf.to_object(model_args)
bert_config.update(model_args)
if self.pretrain:
text_encoder, _ = BertForMaskedLM.from_pretrained(
self.config.text_encoder, config=bert_config,
output_loading_info=True
)
else:
text_encoder, _ = BertModel.from_pretrained(
self.config.text_encoder, config=bert_config,
add_pooling_layer=False, output_loading_info=True
)
return text_encoder
def build_vision_encoder(self):
# if self.config.vit_type in ["beit", "deit", "vit", "vit32"]:
if self.config.vit_type in ["beit"]:
vision_encoder = self.build_huggingface_vit_with_image_size(
self.config.vit_name_or_pretrained_path, self.config.image_res,)
else:
raise ValueError(f"Unknown vit type {self.config.vit_type}")
# add layernorm for normalizing BEiT outputs hidden states
vision_layernorm = None
if self.config.vit_type == "beit":
vision_layernorm = nn.LayerNorm(self.vision_width, eps=1e-12)
return vision_encoder, vision_layernorm
# @classmethod
# def build_huggingface_vit_with_image_size(cls, model_card: str, image_size: int):
def build_huggingface_vit_with_image_size(self, model_card: str, image_size: int):
"""Build a vit model from huggingface hub, also interpolate pos_embed when needed.
Args:
model_card: name in huggingface hub, e.g., `facebook/deit-base-patch16-224`
image_size: new image size, may be different from pre-training image_size of `model_card`
ref: https://github.com/huggingface/transformers/issues/12167#issuecomment-861356232
"""
is_beit = "beit" in model_card
if "beit" in model_card:
model_cls, config_cls = BeitModel, BeitConfig
elif "deit" in model_card or "vit" in model_card:
# the deit model we use is loaded in vit arch,
# see https://huggingface.co/facebook/deit-base-patch16-224#how-to-use
model_cls, config_cls = ViTModel, ViTConfig
else:
raise ValueError(f"Unexpected model_card: {model_card}")
# BEiT uses average pooled tokens instead of [CLS] used by other models
tmp_model = model_cls.from_pretrained(model_card, add_pooling_layer=is_beit)
state_dict = tmp_model.state_dict()
del tmp_model
# Override params for sparse vision encoder
model_args = getattr(self.config, 'vision_encoder_args', {})
if model_args:
model_args = OmegaConf.to_object(model_args)
model_config = config_cls.from_pretrained(
model_card,
image_size=image_size,
**model_args,
)
model = model_cls(config=model_config, add_pooling_layer=is_beit, num_frames=self.config.video_input.num_frames)
if is_beit:
# interpolate relative pos bias
state_dict = interpolate_pos_relative_bias_beit_3d(
state_dict_old=state_dict,
state_dict_new=model.state_dict(),
patch_shape_new=model.window_size
)
else:
# interpolate pos_embed and load weights to new model
state_dict["embeddings.position_embeddings"] = interpolate_pos_embed(
pos_embed_old=state_dict["embeddings.position_embeddings"],
pos_embed_new=model.embeddings.position_embeddings,
num_patches_new=model.embeddings.patch_embeddings.num_patches
)
msg = model.load_state_dict(state_dict, strict=False)
return model
def get_text_encoder(self):
"""get text encoder, used for text and cross-modal encoding"""
encoder = self.text_encoder
return encoder.bert if hasattr(encoder, "bert") else encoder
def encode_image(self, video, output_token_idx=False, output_attentions=False):
video_embeds = self.vision_encoder(video, output_token_idx=output_token_idx, output_attentions=output_attentions) # (bsz, seq_len, d)
if self.vision_layernorm is not None: # only for BEiT mean-pooling
video_embeds.last_hidden_state = self.vision_layernorm(video_embeds.last_hidden_state)
if output_token_idx:
token_idx = video_embeds.token_idx
if output_attentions:
attentions = video_embeds.attentions
if self.config.vit_type == "beit":
pooled_video_embeds = video_embeds.pooler_output # (bsz*num_frms, d)
video_embeds = video_embeds.last_hidden_state # (bsz*num_frms, L, d)
else:
video_embeds = video_embeds.last_hidden_state
pooled_video_embeds = video_embeds[:, 0]
outputs = (video_embeds, pooled_video_embeds)
if output_token_idx:
outputs += (token_idx,)
if output_attentions:
outputs += (attentions,)
return outputs
def _encode_image(self, image):
bsz, num_frms, c, h, w = image.shape # `num_frms` could be changing for image (=1) or video (e.g., =4)
image = image.view(bsz*num_frms, c, h, w)
image_embeds = self.vision_encoder(image)
if self.vision_layernorm is not None: # only for BEiT mean-pooling
image_embeds.last_hidden_state = self.vision_layernorm(image_embeds.last_hidden_state)
if self.config.vit_type == "beit":
pooled_image_embeds = image_embeds.pooler_output # (bsz*num_frms, d)
image_embeds = image_embeds.last_hidden_state # (bsz*num_frms, L, d)
else:
image_embeds = image_embeds.last_hidden_state
pooled_image_embeds = image_embeds[:, 0]
image_embeds = image_embeds.view(bsz, num_frms, -1, self.vision_width) # (bsz, num_frms, L, d)
pooled_image_embeds = pooled_image_embeds.view(bsz, num_frms, self.vision_width) \
if pooled_image_embeds is not None else None # (bsz, num_frms, d)
return image_embeds, pooled_image_embeds
def encode_text(self, text):
text_output = self.get_text_encoder()(
text.input_ids,
attention_mask=text.attention_mask,
return_dict=True,
mode='text'
)
text_embeds = text_output.last_hidden_state
pooled_text_embeds = text_embeds[:, 0]
return text_embeds, pooled_text_embeds
@torch.no_grad()
def clip_contrastive_temperature(self, min_val=0.001, max_val=0.5):
"""Seems only used during pre-training"""
self.temp.clamp_(min_val, max_val)
@torch.no_grad()
def get_mask(self, sim, idx=None, normalize=False):
"""
sim: (N, N)
idx: (N, )
normalize: bool, make row sum equal to 1
"""
if idx is not None:
idx = idx.view(-1, 1)
mask = torch.eq(idx, idx.T).to(sim.dtype)
if normalize:
mask = mask / mask.sum(1, keepdim=True)
else:
mask = torch.zeros_like(sim)
mask.fill_diagonal_(1)
return mask # `1` mark valid/matched location
def get_contrastive_loss(self, pooled_image_embeds, pooled_text_embeds, idx=None):
sim_i2t, sim_t2i = self.get_sim(
pooled_image_embeds, pooled_text_embeds, t=self.temp)
with torch.no_grad():
sim_i2t_targets = self.get_mask(sim_i2t, idx=idx, normalize=True)
sim_t2i_targets = sim_i2t_targets
loss_i2t = -torch.sum(
F.log_softmax(sim_i2t, dim=1) * sim_i2t_targets, dim=1).mean()
loss_t2i = -torch.sum(
F.log_softmax(sim_t2i, dim=1) * sim_t2i_targets, dim=1).mean()
loss_ita = (loss_i2t + loss_t2i) / 2
return loss_ita, sim_i2t, sim_t2i
def get_sim(self, pooled_image_embeds, pooled_text_embeds, t=1):
"""
Args:
pooled_image_embeds: (bsz, num_frms, d)
pooled_text_embeds: (bsz, d)
t: temperature
"""
image_proj = self.vision_proj
text_proj = self.text_proj
image_feat = F.normalize(image_proj(pooled_image_embeds), dim=-1)
text_feat = F.normalize(text_proj(pooled_text_embeds), dim=-1)
if image_feat.ndim == 3:
sim_i2t = torch.einsum("mld,nd->mln", image_feat, text_feat).mean(1) / t # (N, N)
else:
sim_i2t = torch.einsum("md,nd ->mn", image_feat, text_feat) / t # (N, N)
sim_t2i = sim_i2t.T
return sim_i2t, sim_t2i
def get_itm_loss(self,
sim_i2t,
sim_t2i,
text_embeds,
text_atts,
image_embeds,
image_atts,
idx=None,
):
"""
sim_i2t, sim_t2i: (N, N)
text_embeds, text_atts, image_embeds, image_atts: (N, *)
idx: (N, )
"""
bsz = len(sim_i2t)
with torch.no_grad():
weights_i2t = F.softmax(sim_i2t+1e-4, dim=1) # (N, N)
weights_t2i = F.softmax(sim_t2i+1e-4, dim=1)
mask = self.get_mask(sim_i2t, idx=idx).bool()
weights_i2t.masked_fill_(mask, 0)
weights_t2i.masked_fill_(mask, 0)
# select a negative image for each text
if self.config.itm_hard_neg:
img_neg_indices = torch.multinomial(weights_t2i, 1).squeeze() #RuntimeError: invalid multinomial distribution (sum of probabilities <= 0)
else:
img_neg_indices = self.get_rand_indices(mask, 1).squeeze()
image_embeds_neg = image_embeds[img_neg_indices]
# select a negative text for each image
if self.config.itm_hard_neg:
txt_neg_indices = torch.multinomial(weights_i2t, 1).squeeze()
else:
txt_neg_indices = self.get_rand_indices(mask, 1).squeeze()
text_embeds_neg = text_embeds[txt_neg_indices]
text_atts_neg = text_atts[txt_neg_indices] # (N, L, d)
# embedding on local gpu
_text_embeds = text_embeds
_text_atts = text_atts
_image_embeds = image_embeds
_image_atts = image_atts
# concat embeddings
text_embeds_all = torch.cat([_text_embeds, _text_embeds, text_embeds_neg], dim=0)
text_atts_all = torch.cat([_text_atts, _text_atts, text_atts_neg], dim=0)
image_embeds_all = torch.cat([_image_embeds, image_embeds_neg, _image_embeds], dim=0)
image_atts_all = torch.cat([_image_atts, _image_atts, _image_atts], dim=0)
text_encoder = self.get_text_encoder()
output = text_encoder(
encoder_embeds=text_embeds_all,
attention_mask=text_atts_all,
encoder_hidden_states=image_embeds_all,
encoder_attention_mask=image_atts_all,
return_dict=True,
mode='fusion',
)
itm_embeds = output.last_hidden_state[:, 0] # pos (N, d) + neg (2N, d)
loss_itm = self._get_itm_loss(itm_embeds, enc=self.itm_head)
itm_embeds_pos = itm_embeds[:bsz] # (N, d)
return loss_itm, itm_embeds_pos
def _get_itm_loss(self, itm_embeds, enc):
"""
itm_embeds: (3*N, D)
enc: nn.Module that projects cls_embeds
"""
itm_scores = enc(itm_embeds) # (3*N, 2)
bs = itm_scores.size(0) // 3
itm_labels = itm_scores.new_ones(3*bs, dtype=torch.long)
itm_labels[bs:] = 0
loss_itm = F.cross_entropy(itm_scores, itm_labels)
return loss_itm
def get_rand_indices(self, mask, k):
"""
Args:
mask: (N, L) 0 indicates the positions that we can sample, 1 otherwise
k: #indices to sample at each row
Returns:
(N, k) indices
"""
mask = mask.float()
mask = mask - 10000 * mask
mask += torch.randn_like(mask)
_, indices = torch.sort(mask, dim=1, descending=True)
indices = indices[:, :k].contiguous()
return indices
|